Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_2_a1, author = {Kalidas Das and Amit Sarkar and Prabir Kumar Kundu}, title = {Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of {Lie} group transformation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {146--157}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/} }
TY - JOUR AU - Kalidas Das AU - Amit Sarkar AU - Prabir Kumar Kundu TI - Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of Lie group transformation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 146 EP - 157 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/ LA - en ID - JSFU_2017_10_2_a1 ER -
%0 Journal Article %A Kalidas Das %A Amit Sarkar %A Prabir Kumar Kundu %T Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of Lie group transformation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 146-157 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/ %G en %F JSFU_2017_10_2_a1
Kalidas Das; Amit Sarkar; Prabir Kumar Kundu. Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of Lie group transformation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 146-157. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/
[1] S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, Developments and Applications of Non-Newtinian flows, 66 (1995), 99–105
[2] J. A. Eastman, S. L. S. S. Choi, W. Yu, L. J. Thompson, “Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles”, Appl. Phys. Lett., 78:6 (2001), 718–720 | DOI
[3] S. Das, “Temperature dependence of thermal conductivity enhancement for nanofluids”, J. Heat Transfer, 125 (2003), 567–574 | DOI
[4] J. Buongiorno, “Convective transport in nanofluids”, ASME J. Heat Transfer., 128 (2006), 240–250 | DOI
[5] A. V. Kuznetsov, D. A. Nield, “Natural convective boundary layer flow of a nanofluid past a vertical plate”, Int. J. Thermal Sci., 49 (2010), 243–247 | DOI
[6] M. M. Rashidi, E. Erfani, “The modified differential transform method for investigating nano boundary-layers over stretching surfaces”, Int. J. of Numerical Methods for Heat and Fluid Flow, 21:7 (2011), 864–883 | DOI | MR
[7] A. Aziz, W. A. Khan, “Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate”, Int. J. Thermal Sci., 52 (2012), 83–90 | DOI
[8] R. A. Van Gorder, E. Sweet, K. Vajravelu, “Nano boundary layers over stretching surfaces”, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 1494–1500 | DOI | MR | Zbl
[9] W. A. Khan, I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet”, Int. J. Heat Mass Trans., 53 (2010), 2477–2483 | DOI | Zbl
[10] O. D. Makinde, A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Thermal Sci., 50 (2011), 1326–1332 | DOI
[11] R. Kandasamya, P. Loganathanb, P. Puvi Arasub, “Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection”, Nuc. Eng. Design., 241 (2011), 2053–2059 | DOI
[12] M. A. A. Hamad, M. Ferdows, “Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a Lie group analysis”, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 132–140 | DOI | MR | Zbl
[13] A. C. Cogley, W. E. Vincenty, S. E. Gilles, “Differential approximation for radiation in a non-gray gas near equilibrium”, AIAA J., 6 (1968), 551–553 | DOI
[14] O. D. Makinde, “Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate”, Int. Comm. Heat. Mass Transfer, 32 (2005), 1411–1419 | DOI
[15] F. S. Ibrahim, A. M. Elaiw, A. A. Bakr, “Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids”, Appl. Math. Inf. Sci., 2 (2008), 143–162 | MR | Zbl
[16] K. Das, “Impact of thermal radiation on MHD slip flow over a flate plate with variable fluid properties”, Heat. Mass. and Transfer, 48 (2011), 767–778 | DOI
[17] R. Abdul-Kahar, R. Kandasamy, I. Muhaimin, “Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation”, Computers and Fluids, 52 (2011), 15–21 | DOI | MR | Zbl
[18] P. M. Patil, P. S. Kulkarni, “Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation”, Int. J. Therm. Sci., 47 (2008), 1043–1054 | DOI
[19] R. Kandasamy, I. Muhaimin, H. B. Saim, “Lie group analysis for the effect of temperature-dependent fluid viscosity with thermophoresis and chemical reaction on MHD free convective heat and mass transfer over a porous stretching surface in the presence of heat source/sink”, Commun. Nonlinear Sci. Numer. Simulat., 15:8 (2010), 2109–2123 | DOI | MR | Zbl
[20] M. H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, “Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction”, Int. J. Heat. Mass. Trans., 54 (2011), 3214–3225 | DOI | Zbl
[21] R. Kandasamya, T. Hayatb, S. Obaidatc, “Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink”, Nuclear Engineering and Design, 241:6 (2011), 2155–2161 | DOI