Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of Lie group transformation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 146-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns with a steady MHD boundary layer flow of an electrically conducting nanofluid over a vertical permeable stretching surface with variable stream conditions. The transport model includes the effect of Brownian motion with thermophoresis in presence of chemical reaction and thermal radiation. The group theoretic method is used to find the symmetries of the governing partial differential equations. The reduced equations are solved numerically by employing a fourth order Runge–Kutta method and Shooting techniques to predict the heat and mass transfer characteristics of the nanofluid flow. Numerical results are presented through graphs and tables for several sets of values of the involved parameters of the problem and discussed in details from the physical point of view.
Keywords: nanofluid, magnetic field, chemical reaction, Brownian motion, thermal radiation.
Mots-clés : Lie group transformation
@article{JSFU_2017_10_2_a1,
     author = {Kalidas Das and Amit Sarkar and Prabir Kumar Kundu},
     title = {Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of {Lie} group transformation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {146--157},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/}
}
TY  - JOUR
AU  - Kalidas Das
AU  - Amit Sarkar
AU  - Prabir Kumar Kundu
TI  - Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of Lie group transformation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 146
EP  - 157
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/
LA  - en
ID  - JSFU_2017_10_2_a1
ER  - 
%0 Journal Article
%A Kalidas Das
%A Amit Sarkar
%A Prabir Kumar Kundu
%T Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of Lie group transformation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 146-157
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/
%G en
%F JSFU_2017_10_2_a1
Kalidas Das; Amit Sarkar; Prabir Kumar Kundu. Nanofluid flow over a stretching surface in presence of chemical reaction and thermal radiation: an application of Lie group transformation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 146-157. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a1/

[1] S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, Developments and Applications of Non-Newtinian flows, 66 (1995), 99–105

[2] J. A. Eastman, S. L. S. S. Choi, W. Yu, L. J. Thompson, “Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles”, Appl. Phys. Lett., 78:6 (2001), 718–720 | DOI

[3] S. Das, “Temperature dependence of thermal conductivity enhancement for nanofluids”, J. Heat Transfer, 125 (2003), 567–574 | DOI

[4] J. Buongiorno, “Convective transport in nanofluids”, ASME J. Heat Transfer., 128 (2006), 240–250 | DOI

[5] A. V. Kuznetsov, D. A. Nield, “Natural convective boundary layer flow of a nanofluid past a vertical plate”, Int. J. Thermal Sci., 49 (2010), 243–247 | DOI

[6] M. M. Rashidi, E. Erfani, “The modified differential transform method for investigating nano boundary-layers over stretching surfaces”, Int. J. of Numerical Methods for Heat and Fluid Flow, 21:7 (2011), 864–883 | DOI | MR

[7] A. Aziz, W. A. Khan, “Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate”, Int. J. Thermal Sci., 52 (2012), 83–90 | DOI

[8] R. A. Van Gorder, E. Sweet, K. Vajravelu, “Nano boundary layers over stretching surfaces”, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 1494–1500 | DOI | MR | Zbl

[9] W. A. Khan, I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet”, Int. J. Heat Mass Trans., 53 (2010), 2477–2483 | DOI | Zbl

[10] O. D. Makinde, A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Thermal Sci., 50 (2011), 1326–1332 | DOI

[11] R. Kandasamya, P. Loganathanb, P. Puvi Arasub, “Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection”, Nuc. Eng. Design., 241 (2011), 2053–2059 | DOI

[12] M. A. A. Hamad, M. Ferdows, “Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a Lie group analysis”, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 132–140 | DOI | MR | Zbl

[13] A. C. Cogley, W. E. Vincenty, S. E. Gilles, “Differential approximation for radiation in a non-gray gas near equilibrium”, AIAA J., 6 (1968), 551–553 | DOI

[14] O. D. Makinde, “Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate”, Int. Comm. Heat. Mass Transfer, 32 (2005), 1411–1419 | DOI

[15] F. S. Ibrahim, A. M. Elaiw, A. A. Bakr, “Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids”, Appl. Math. Inf. Sci., 2 (2008), 143–162 | MR | Zbl

[16] K. Das, “Impact of thermal radiation on MHD slip flow over a flate plate with variable fluid properties”, Heat. Mass. and Transfer, 48 (2011), 767–778 | DOI

[17] R. Abdul-Kahar, R. Kandasamy, I. Muhaimin, “Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation”, Computers and Fluids, 52 (2011), 15–21 | DOI | MR | Zbl

[18] P. M. Patil, P. S. Kulkarni, “Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation”, Int. J. Therm. Sci., 47 (2008), 1043–1054 | DOI

[19] R. Kandasamy, I. Muhaimin, H. B. Saim, “Lie group analysis for the effect of temperature-dependent fluid viscosity with thermophoresis and chemical reaction on MHD free convective heat and mass transfer over a porous stretching surface in the presence of heat source/sink”, Commun. Nonlinear Sci. Numer. Simulat., 15:8 (2010), 2109–2123 | DOI | MR | Zbl

[20] M. H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, “Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction”, Int. J. Heat. Mass. Trans., 54 (2011), 3214–3225 | DOI | Zbl

[21] R. Kandasamya, T. Hayatb, S. Obaidatc, “Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink”, Nuclear Engineering and Design, 241:6 (2011), 2155–2161 | DOI