On some maximal clone of partial ultrafunctions on a two-element set
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 140-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multifunctions on a two-element set are considered in this paper. Functions from finite set to set of all subsets of this set are called multifunctions. Partial functions, hyperfunctions, ultrafunctions, partial hyperfunctions and partial ultrafunctions are arised depending on the type of multifunctions and superposition. In this work the problem of description of clones (sets of function closed with respect to the operation of superposition and containing all the projections) of partial ultrafunctions is considered. We got a description of one maximal clone of partial ultrafunctions on two-element set by the predicate approach.
Keywords: multifunctions, ultrafunctions, lattice.
Mots-clés : maximal clones
@article{JSFU_2017_10_2_a0,
     author = {Sergey A. Badmaev},
     title = {On some maximal clone of partial ultrafunctions on a two-element set},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {140--145},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a0/}
}
TY  - JOUR
AU  - Sergey A. Badmaev
TI  - On some maximal clone of partial ultrafunctions on a two-element set
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 140
EP  - 145
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a0/
LA  - en
ID  - JSFU_2017_10_2_a0
ER  - 
%0 Journal Article
%A Sergey A. Badmaev
%T On some maximal clone of partial ultrafunctions on a two-element set
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 140-145
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a0/
%G en
%F JSFU_2017_10_2_a0
Sergey A. Badmaev. On some maximal clone of partial ultrafunctions on a two-element set. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 140-145. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a0/

[1] E. L. Post, “Determination of All Closed Systems of Truth Tables”, Bull. Amer. Math. Soc., 26 (1920), 427

[2] E. L. Post, “Introduction to a General Theory of Elementary Proposition”, Amer. J. Math., 43:4 (1921), 163–185 | DOI | MR | Zbl

[3] I. G. Rosenberg, “Uber die Verschiedenheit Maximaler Klassen in $P_k$”, Rev. Roumaine Math. Pures Appl., 14 (1969), 431–438 | MR | Zbl

[4] V. V. Tarasov, “Completeness Criterion for Partial Logic Functions”, Problemy Kibernetiki, 30 (1975), 319–325 (in Russian) | Zbl

[5] Lo Czu Kai, “Maximal closed classes in the set of partial functions on multi valued logic”, Kiberneticheskiy Sbornik. Novaya seriya, 25 (1988), 131–141

[6] L. Haddad, I. G. Rosenberg, D. Schweigert, “A Maximal Partial Clone and Slupecki-type Criterion”, Acta Sci. Math., 54 (1990), 89–98 | MR | Zbl

[7] V. I. Panteleyev, “Completeness Criterion for Incompletely Defined Boolean Functions”, Vestnik Samar. Gos. Univ. Est.-Naucn. Ser., 68:2 (2009), 60–79 (in Russian)

[8] V. I. Panteleyev, “Completeness Criterion for Incompletely Defined Partial Boolean Functions”, Vestnik Novos. Gos. Univ. Ser.: Mat., mekhan., inf., 9:3 (2009), 95–114 (in Russian)

[9] V. I. Panteleyev, “On Two Maximal Multiclones and Partial Ultraclones”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 5:4 (2012), 46–53 (in Russian)

[10] S. A. Badmaev, I. K. Sharankhaev, “On Maximal Clones of Partial Ultrafunctions on a Two-Element Set”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 16 (2016), 3–18 (in Russian) | Zbl

[11] S. A. Badmaev, “On Complete Sets of Partial Ultrafunctions on a Two-Element Set”, Vestnik Buryat. Gos. Univ. Mat., Inf., 3 (2015), 61–67 (in Russian)