Synthesis of integrated one-stage tracking algorithm for GNSS and INS based attitude estimation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 22-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the theory of optimal filtering of information processes is used to synthesize optimal one-stage estimation algorithm for the object orientation angles. The algorithm uses signals of the satellite navigation and inertial systems. The block diagram of an integrated single-stage filtration system for object orientation angles is presented.
Keywords: satellite radio navigation system, attitude determination, tracking, synthesis, inertial-satellite system.
Mots-clés : optimal algorithm
@article{JSFU_2017_10_1_a2,
     author = {Alexander I. Perov},
     title = {Synthesis of integrated one-stage tracking algorithm for {GNSS} and {INS} based attitude estimation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {22--35},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a2/}
}
TY  - JOUR
AU  - Alexander I. Perov
TI  - Synthesis of integrated one-stage tracking algorithm for GNSS and INS based attitude estimation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 22
EP  - 35
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a2/
LA  - en
ID  - JSFU_2017_10_1_a2
ER  - 
%0 Journal Article
%A Alexander I. Perov
%T Synthesis of integrated one-stage tracking algorithm for GNSS and INS based attitude estimation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 22-35
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a2/
%G en
%F JSFU_2017_10_1_a2
Alexander I. Perov. Synthesis of integrated one-stage tracking algorithm for GNSS and INS based attitude estimation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 22-35. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a2/

[1] P. Misra, P. Enge, Global Positioning System: Signals, Measurements and Performance, Second edition, 2012

[2] E. D. Kaplan, C. J. Hegarty, Understanding GPS principles and applications, Artech House Inc., Norwood, Massachusetts, 2006

[3] E. C. Clark, Attitude Determination Using GPS, PhD Thesis, Stanford University, 1992

[4] B. W. Parkinson, J. J. Spilker, “Global positioning system: theory and applications”, AIAA, 2 (1996), 519–538

[5] A. A. Povalyaev, “Satellite navigation systems: time, clock, measuring formatsii and determination of coordinates”, Radio Engineering, 2008 (in Russian)

[6] I. A. Lipkin, Satellite navigation systems, The university book, 2001 (in Russian)

[7] A. D. Boriskin, A. V. Veytsel, V. A. Veytsel, M. I. Zhodzishsky, D. S. Milutin, The equipment of high-precision positioning signals of global navigation satellite systems receivers consumers of navigation information, MAI-Print, 2010 (in Russian)

[8] V. N. Kharisov, A. E. Perkov, “Algorithms of filtering at phase measurements”, Radiotehnika, 7 (1997), 90–101 (in Russian)

[9] V. N. Kharisov, N. T. Bulavsky, “Filtering relative coordinates in the SRNS GLO-NASS: an approach based on the signal time”, Radio engineering, 7 (1999) (in Russian)

[10] L. S. Rozov, N. V. Sobtsov, “The problem of filtration under ambiguous measurements”, Technology and Electronics, 25:9 (1980) (in Russian)

[11] K. V. Penzin, “Algorithms operational processing multiscale measurements maximum likelihood”, Technology and Electronics, 25:1 (1990) (in Russian)

[12] A. I. Perov, V. N. Kharisov, “GLONASS. The principles of construction and operation”, Radio Engineering, 2010 (in Russian)

[13] Y. L. Fateev, D. D. Dmitriev, V. N. Tyapkin, I. N. Ishchuk, E. G. Kabulova, “The phase ambiguity resolution by the exhaustion method in a single-base interferometer”, ARPN Journal of Engineering and Applied Sciences, 10:18 (2015), 8264–8270

[14] Yu. L. Fateev, D. D. Dmitriev, V. N. Tyapkin, I. N. Kartsan, A. E. Goncharov, “Phase methods for measuring the spatial orientation of objects using satellite navigation equipment”, IOP Conference Series: Materials Science and Engineering, 94 (2015), 012022 | DOI

[15] Yu. L. Fateev, D. D. Dmitriev, V. N. Tyapkin, N. S. Kremez, V. N. Bondarev, “Phase ambiguity resolution in the GLONASS/GPS navigation equipment, equipped with antenna arrays”, International Siberian Conference on Control and Communications (SIBCON) (2015)

[16] M. S. Hodgart, S. Purivigraipong, “New approach to resolving instantaneous integer ambi-guity resolution for spacecraft attitude determination using GPS signals”, Proceedings of IEEE position location and navigation symposium, PLANS'00 (2000), 132–139

[17] D. Lin, L. K. Voon, N. Nagarajan, “Real-time attitude determination for microsatellite by LAMBDA method combined with Kalman filtering”, 22nd AIAA international communication satellite systems conference (Monterey, 2004), 8

[18] S. Verhagen, P. J. G. Teunissen, “New global navigation satellite system ambiguity resolution method compared to existing approaches”, J. Guidance, Control, and Dynamics, 29:4 (2006), 981–991 | DOI

[19] A. I. Perov, “Tracking Algorithm for Estimating the Orientation Angles of the Object Based on the Signals of Satellite Radio Navigation System”, American Journal of Applied CSiences, 12:12 (2015), 1000–1013 | DOI

[20] M. S. Grewal, L. R. Wiell, A. P. Andrews, Glibal Positioning Systems, inertial navigation and integration, Wiley, New York, 2001

[21] V. I. Tikhonov, V. N. Kharisov, “Statistical analysis and synthesis of radio engineering devices and systems”, Radio and Communications, 2004 (in Russian)

[22] A. I. Perov, “Methods and algorithms for optimal signal reception equipment in consumers of satellite radio navigation systems”, Radio Engineering, 2012 (in Russian)

[23] S. V. Pervachev, Radioautomatics, M., 1982