Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_1_a16, author = {Andrey N. Vakilov}, title = {Zeros in partition function and critical behavior of disordered three dimensional {Ising} model}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {128--131}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/} }
TY - JOUR AU - Andrey N. Vakilov TI - Zeros in partition function and critical behavior of disordered three dimensional Ising model JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 128 EP - 131 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/ LA - en ID - JSFU_2017_10_1_a16 ER -
%0 Journal Article %A Andrey N. Vakilov %T Zeros in partition function and critical behavior of disordered three dimensional Ising model %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 128-131 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/ %G en %F JSFU_2017_10_1_a16
Andrey N. Vakilov. Zeros in partition function and critical behavior of disordered three dimensional Ising model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 128-131. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/
[1] A. B. Harris, “Effect of random defects on the critical behavior of Ising models”, J. Phys. C: Solid State Phys., 7 (1974), 1671–1692 | DOI
[2] I. K. Kamilov, A. K. Murtazaev, Kh. K. Aliev, “Monte-Carlo studies of phase transitions and critical phenomena”, Phys. Usp., 42 (1999), 689–709 | DOI
[3] R. Fol'k, Yu. Golovach, T. Yavorskii, “Critical exponents of a three-dimensional weakly diluted quenched Ising model”, Phys. Usp., 46 (2003), 169–191 | DOI
[4] A. K. Murtazaev, I. K. Kamilov, A. B. Babaev, “Critical Behavior of a Cubic-Lattice 3D Ising Model for Systems with Quenched Disorder”, J. Exp. Theor. Phys., 99 (2004), 1201–1206 | DOI
[5] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, A. S. Krinitsyn, “Computer Simulation of the Critical Behavior of 3D Disordered Ising Model”, J. Exp. Theor. Phys., 105 (2007), 371–378 | DOI
[6] A. N. Vakilov, V. V. Prudnikov, “Numerical simulation of the critical dynamics of dilute magnetic materals”, JETP Lett., 55 (1992), 741–745
[7] H. O. Heuer, “Critical crossover phenomena in disordered Ising systems”, J. Phys. A, 26 (1993), L333–L339 | DOI
[8] H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor et al., “Critical exponents of the three dimensional diluted Ising model”, Phys. Rev. B, 58 (1998), 2740–2751 | DOI
[9] P. Calabrese, V. Martin-Mayor, A. Pelissetto et al., “Three-dimensional randomly dilute Ising model: Monte Carlo results”, Phys. Rev. E, 68 (2003), 036136–036148 | DOI
[10] A. Gordillo-Guerrero, R. Kenna, J. J. Ruiz-Lorenzo, “Universal amplitude ratios in the Ising model in three dimensions”, J. Stat. Mech., P0919 (2011), 1–16
[11] R. H. Ferrenberg, R. H. Swendsen, “New Monte Carlo technique for studying phase transitions”, Phys. Rev. Lett., 61 (1988), 2635–2638 | DOI