Zeros in partition function and critical behavior of disordered three dimensional Ising model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 128-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We used a Monte Carlo simulation of the structurally disordered three dimensional Ising model. For the systems with spin concentrations $p = 0.95 , 0.8 , 0.6$ and $0.5$ we calculated the correlation-length critical exponent $\nu$ by finite-size scaling. Extrapolations to the thermodynamic limit yield $\nu(0.95) = 0.705(5),\, \nu(0.8) = 0.711(6),\, \nu(0.6) = 0.736(6)$ and $\nu(0.5) = 0.744(6)$. The analysis of the results demonstrates the nonuniversality of the critical behavior in the disordered Ising model.
Keywords: complex temperature, critical exponents, disordered systems,zeroes of the partition function.
Mots-clés : Monte Carlo simulation
@article{JSFU_2017_10_1_a16,
     author = {Andrey N. Vakilov},
     title = {Zeros in partition function and critical behavior of disordered three dimensional {Ising} model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {128--131},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/}
}
TY  - JOUR
AU  - Andrey N. Vakilov
TI  - Zeros in partition function and critical behavior of disordered three dimensional Ising model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 128
EP  - 131
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/
LA  - en
ID  - JSFU_2017_10_1_a16
ER  - 
%0 Journal Article
%A Andrey N. Vakilov
%T Zeros in partition function and critical behavior of disordered three dimensional Ising model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 128-131
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/
%G en
%F JSFU_2017_10_1_a16
Andrey N. Vakilov. Zeros in partition function and critical behavior of disordered three dimensional Ising model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 128-131. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a16/

[1] A. B. Harris, “Effect of random defects on the critical behavior of Ising models”, J. Phys. C: Solid State Phys., 7 (1974), 1671–1692 | DOI

[2] I. K. Kamilov, A. K. Murtazaev, Kh. K. Aliev, “Monte-Carlo studies of phase transitions and critical phenomena”, Phys. Usp., 42 (1999), 689–709 | DOI

[3] R. Fol'k, Yu. Golovach, T. Yavorskii, “Critical exponents of a three-dimensional weakly diluted quenched Ising model”, Phys. Usp., 46 (2003), 169–191 | DOI

[4] A. K. Murtazaev, I. K. Kamilov, A. B. Babaev, “Critical Behavior of a Cubic-Lattice 3D Ising Model for Systems with Quenched Disorder”, J. Exp. Theor. Phys., 99 (2004), 1201–1206 | DOI

[5] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, A. S. Krinitsyn, “Computer Simulation of the Critical Behavior of 3D Disordered Ising Model”, J. Exp. Theor. Phys., 105 (2007), 371–378 | DOI

[6] A. N. Vakilov, V. V. Prudnikov, “Numerical simulation of the critical dynamics of dilute magnetic materals”, JETP Lett., 55 (1992), 741–745

[7] H. O. Heuer, “Critical crossover phenomena in disordered Ising systems”, J. Phys. A, 26 (1993), L333–L339 | DOI

[8] H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor et al., “Critical exponents of the three dimensional diluted Ising model”, Phys. Rev. B, 58 (1998), 2740–2751 | DOI

[9] P. Calabrese, V. Martin-Mayor, A. Pelissetto et al., “Three-dimensional randomly dilute Ising model: Monte Carlo results”, Phys. Rev. E, 68 (2003), 036136–036148 | DOI

[10] A. Gordillo-Guerrero, R. Kenna, J. J. Ruiz-Lorenzo, “Universal amplitude ratios in the Ising model in three dimensions”, J. Stat. Mech., P0919 (2011), 1–16

[11] R. H. Ferrenberg, R. H. Swendsen, “New Monte Carlo technique for studying phase transitions”, Phys. Rev. Lett., 61 (1988), 2635–2638 | DOI