Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_1_a15, author = {Azam A. Imomov}, title = {On the limit structure of continuous-time {Markov} branching process}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {117--127}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a15/} }
TY - JOUR AU - Azam A. Imomov TI - On the limit structure of continuous-time Markov branching process JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 117 EP - 127 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a15/ LA - en ID - JSFU_2017_10_1_a15 ER -
Azam A. Imomov. On the limit structure of continuous-time Markov branching process. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a15/
[1] W. Anderson, Continuous-Time Markov Chains: An Applications-Oriented Approach, Springer, New York, 1991 | MR | Zbl
[2] K. B. Athreya, P. E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl
[3] V. P. Chistyakov, “Local limit theorems in theory of branching random process”, Theory of Probability and its Applications, 2:3 (1957), 345–363 | DOI | MR
[4] Sh. K. Formanov, A. A. Imomov, “On asymptotic properties of Q-processes”, Uzbek. Matem. Zh., 3 (2011), 175–183 (in Russian) | MR
[5] T. E. Harris, Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, 119, Springer, Berlin, 1963 | MR | Zbl
[6] A. A. Imomov, “Limit properties of transition function of continuous-time Markov Branching Processes”, International Journal of Stochastic Analysis, 2014 (2014) | DOI | MR | Zbl
[7] A. A. Imomov, “Limit Theorem for the Joint Distribution in the Q-processes”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 289–296 | MR
[8] A. A. Imomov, “On Markov analogue of Q-processes with continuous time”, Theory of Probability and Mathematical Statistics, 84 (2012), 57–64 | DOI | MR | Zbl
[9] A. A. Imomov, “Q-processes as the Galton–Watson Branching Processes with Immigration”, Trudy IX FAMET Konf. (Krasnoyarsk, Russia, 2010), 148–152 (in Russian)
[10] A. A. Imomov, “Some asymptotical behaviors of Galton–Watson branching processes under condition of non-extinctinity of it remote future”, Abst. of Com. of 8th Vilnius Conf. “Probab. Theory and Math. Statistics” (Vilnius, Lithuania, 2002)
[11] A. A. Imomov, “On a form of condition of non-extinction of branching processes”, Uzbek. Matem. Zh., 2 (2001), 46–51 (in Russian) | MR
[12] F. C. Klebaner, U. Rösler, S. Sagitov, “Transformations of Galton-Watson processes and linear fractional reproduction”, Advances in Applied Probability, 39 (2007), 1036–1053 | DOI | MR | Zbl
[13] A. N. Kolmogorov, N. A. Dmitriev, “Branching stochastic process”, Dokl. Akad. Nauk SSSR, 56 (1947), 7–10 (in Russian) | MR
[14] J. Lamperti, P. E. Ney, “Conditioned branching processes and their limiting diffusions”, Theory of Probability and its Applications, 13 (1968), 126–137 | DOI | MR | Zbl
[15] A. G. Pakes, “Critical Markov branching process limit theorems allowing infinite variance”, Advances in Applied Probability, 42 (2010), 460–488 | DOI | MR | Zbl
[16] A. G. Pakes, “Revisiting conditional limit theorems for the mortal simple branching process”, Bernoulli, 5:6 (1999), 969–998 | DOI | MR | Zbl
[17] A. G. Pakes, “Some limit theorems for the total progeny of a branching process”, Advances in Applied Probability, 3 (1971), 176–192 | DOI | MR | Zbl
[18] B. A. Sevastyanov, “The theory of branching random processes”, Uspekhi Matem. Nauk, 6(46) (1951), 47–99 (in Russian) | MR | Zbl
[19] B. A. Sevastyanov, Branching processes, Nauka, M., 1971 (in Russian) | Zbl