On the nonparametric identification and dual adaptive control of dynamic processes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 96-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of nonparametric control of dynamic objects in discrete-continuous process is considered. The emphasis is placed on development of dual control non-parametric algorithms. Results of simulation experiment are described in details. These results demonstrate that the quality of control can be considerably improved in comparison with standard controllers by using the non-parametric dual control algorithm.
Keywords: dynamic process, non-parametric dual control, adaptive system, standard controller.
@article{JSFU_2017_10_1_a13,
     author = {Alexander V. Medvedev and Anastasia V. Raskina},
     title = {On the nonparametric identification and dual adaptive control of dynamic processes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {96--107},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a13/}
}
TY  - JOUR
AU  - Alexander V. Medvedev
AU  - Anastasia V. Raskina
TI  - On the nonparametric identification and dual adaptive control of dynamic processes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 96
EP  - 107
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a13/
LA  - en
ID  - JSFU_2017_10_1_a13
ER  - 
%0 Journal Article
%A Alexander V. Medvedev
%A Anastasia V. Raskina
%T On the nonparametric identification and dual adaptive control of dynamic processes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 96-107
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a13/
%G en
%F JSFU_2017_10_1_a13
Alexander V. Medvedev; Anastasia V. Raskina. On the nonparametric identification and dual adaptive control of dynamic processes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 96-107. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a13/

[1] E. Asarin, A. Donze, O. Maler, D. Nickovic, “Parametric identification of temporal properties”, RV 2011, LNCS, 7186, eds. Khurshid S., Sen K., Springer, Heidelberg, 2012, 147–160

[2] Ja. Z. Cypkin, Adaptation and learning in automatic systems, Nauka, M., 1968 (in Russian)

[3] A. V. Medvedev, “The theory of non-parametric systems. Control-I”, Vestnik SibGAU, 48:2 (2013), 57–63 (in Russian)

[4] A. V. Medvedev, “The theory of non-parametric systems. Control-II”, Vestnik SibGAU, 49:3 (2013), 85–90 (in Russian)

[5] A. A. Fel'dbaum, Fundamentals of the theory of optimal automatic systems, Fizmatgiz, M., 1963 (in Russian)

[6] A. V. Medvedev, Fundamentals of the theory of Adaptive Systems, SibGAU, Krasnoyarsk, 2015 (in Russian)

[7] B. Wittenmark, “Adaptive dual control methods: An overview”, 5th IFAC Symposium on Adaptive Systems in Control and Signal Processing (Budapest, Hungary, 1995), 67–72

[8] N. M. Filatov, U. Keuchel, H. Unbehauen, “Dual control for an unstable mechanical plant”, Control Systems, IEEE, 16:4 (1996), 31–37 | DOI

[9] C. J. Wenk, Y. Bar-Shalom, “A multiple model adaptive dual control algorithm for stochastic systems with unknown parameters”, Automatic Control, IEEE, 25:4 (2003), 703–710 | DOI | MR

[10] Duan Lia, Fucai Qianb, Peilin Fuc, “Optimal nominal dual control for discrete-time linear-quadratic Gaussian problems with unknown parameters”, Automatica, 44:1 (2008), 119–127 | DOI | MR | Zbl

[11] E. Tse, Y. Bar-Shalom, “An actively adaptive control for linear systems with random parameters via the dual control approach”, Automatic Control, IEEE, 18:2 (2003), 109–117 | DOI

[12] S. Fabrit, V. Kadirkamanathant, “Dual Adaptive Control of Nonlinear Stochastic Systems using Neural Networks”, Automatica, 34:2 (1998), 245–253 | DOI | MR

[13] E. A. Nadaraya, Non-parametric estimation of the probability density and the regression curve, Izd. Tbil. un-ta, Tbilisi, 1983