Nanodispersed Mg-based powders received in a hydrogen-argon plasma flow and estimation of their application prospects as hydrogen storage materials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nanodispersed powders, consisting of Mg, Mg and Ni, Mg and Pd, were synthesized in a water-cooled chamber in a hydrogen-helium mixture at atmospheric pressure. Plasma generation was carried out in HF arc discharge in an argon flow with one hollow electrode and the other — crucible with molten metal. The resulting powders were investigated by scanning electron microscopy, X-ray fluorescence analysis and X-ray analysis. When adding nickel during the synthesis, magnesium particles with nickel coating were obtained. Synthesis with palladium resulted in producing magnesium particles with dispersed fine palladium inclusions. However, since the saturated steam pressure of palladium is 2–3 orders lower than that of nickel, then obtaining particles coated with palladium is only possible at higher palladium melt temperatures that we could achieve in this laboratory setup variant. As a possible application of the synthesized powders the possibility of their hydrogen storage usage was experimentally evaluated.
Keywords: magnesium powder, plasma-chemical synthesis, hydrogen storage.
@article{JSFU_2017_10_1_a11,
     author = {Evgenia I. Melnikova and Andrey L. Kolonenko and Gari A. Glushenko and Natalya G. Vnukova and Grigory N. Churilov and Anatoly M. Zhizhaev},
     title = {Nanodispersed {Mg-based} powders received in a hydrogen-argon plasma flow and estimation of their application prospects as hydrogen storage materials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a11/}
}
TY  - JOUR
AU  - Evgenia I. Melnikova
AU  - Andrey L. Kolonenko
AU  - Gari A. Glushenko
AU  - Natalya G. Vnukova
AU  - Grigory N. Churilov
AU  - Anatoly M. Zhizhaev
TI  - Nanodispersed Mg-based powders received in a hydrogen-argon plasma flow and estimation of their application prospects as hydrogen storage materials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 75
EP  - 82
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a11/
LA  - en
ID  - JSFU_2017_10_1_a11
ER  - 
%0 Journal Article
%A Evgenia I. Melnikova
%A Andrey L. Kolonenko
%A Gari A. Glushenko
%A Natalya G. Vnukova
%A Grigory N. Churilov
%A Anatoly M. Zhizhaev
%T Nanodispersed Mg-based powders received in a hydrogen-argon plasma flow and estimation of their application prospects as hydrogen storage materials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 75-82
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a11/
%G en
%F JSFU_2017_10_1_a11
Evgenia I. Melnikova; Andrey L. Kolonenko; Gari A. Glushenko; Natalya G. Vnukova; Grigory N. Churilov; Anatoly M. Zhizhaev. Nanodispersed Mg-based powders received in a hydrogen-argon plasma flow and estimation of their application prospects as hydrogen storage materials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a11/

[1] A. A. Rempel, “Nanotechnologies. Properties and applications of nanostructured materials”, Russ. Him. Rev., 76:5 (2007), 435–46 (in Russian) | DOI

[2] G. N. Churilov, Source of light for spectral analysis, Patent RU 2326353‘1, IPC G01J3/10, 10.06.2008 (in Russian)

[3] H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota et al., “Hydrogen Absorption in the Core/Shell Interface of Pd/Pt Nanoparticles”, J. Am. Chem. Soc., 130 (2008), 1818–1819 | DOI

[4] E. Callini, L. Pasquini, E. Piscopiello et al., “Hydrogen sorption in Pd-decorated Mg-MgO core-shell nanoparticles”, Appl. Phys. Lett., 94 (2009), 221905–221905-3 | DOI

[5] D. S. Jacob, I. Genish, L. Klein, A. Gedanken, “Carbon-Coated Core Shell Structured Copper and Nickel Nanoparticles Synthesized in an Ionic Liquid”, J. Phys. Chem. B, 110:36 (2006), 17711–17714 | DOI

[6] B. Sakintuna, F. Amari-Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, International Journal of Hydrogen Energy, 32 (2007), 1121–1140 | DOI

[7] M. Pozzo, D. Alfe, “Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces”, International Journal of Hydrogen Energy, 34 (2009), 1922–1930 | DOI

[8] M. Daryania, A. Simchi, M. Sadati et al., “Effects of Ti-based catalysts on hydrogen desorption kinetics of nanostructured magnesium hydride”, International Journal of Hydrogen Energy, 39 (2014), 21007–21014 | DOI

[9] T. Kimura, H. Miyaoka, T. Ichikawa, Y. Kojima, “Hydrogen absorption of catalyzed magnesium below room temperature”, International Journal of Hydrogen Energy, 38 (2013), 13728–13733 | DOI

[10] M. Lakhala, M. Bhihi, A. Benyoussef et al., “The hydrogen ab/desorption kinetic properties of doped magnesium hydrideMgH2systems by first principles calculations and kinetic Monte Carlo simulations”, International Journal of Hydrogen Energy, 40 (2015), 6137–6144 | DOI

[11] N. G. Vnukova, A. L. Kolonenko, G. A. Glushchenko, A. P. Burkova et al., “Rapid analysis of monolithic substances by atomic emission spectroscopy”, Pis'ma v ZhETF, 36:10 (2010), 933–934 (in Russian)

[12] G. N. Churilov, I. V. Osipova, E. V. Tomashevich et al., “Hydrogenation of the nanopowders that form in a carbon-helium plasma stream during the introduction of Ni and Mg”, ZhETF, 113:6 (2011), 1057–1062 (in Russian)

[13] A. V. Kuklin, A. A. Kuzubov, P. O. Krasnov et al., “Ni-doping effect of Mg(0001) surface to use it as a hydrogen storage material”, Zh. splavov i soedinenii, 609 (2014), 93–99 (in Russian)

[14] E. Callini, L. Pasquini, T. R. Jensen, E. Bonetti, “Hydrogen storage properties of Mg-Ni nanoparticles”, International journal of hydrogen energy, 38 (2013), 12207–12212 | DOI