Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_1_a10, author = {Sergej V. Znamenskij}, title = {A formula for the mean length of the longest common subsequence}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {71--74}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a10/} }
TY - JOUR AU - Sergej V. Znamenskij TI - A formula for the mean length of the longest common subsequence JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 71 EP - 74 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a10/ LA - en ID - JSFU_2017_10_1_a10 ER -
Sergej V. Znamenskij. A formula for the mean length of the longest common subsequence. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 71-74. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a10/
[1] V. Chvátal, D. Sankoff, “Longest common subsequences of two random sequences”, J. Appl. Prob., 12 (1975), 306–315 | DOI | MR | Zbl
[2] M. A. Kiwi, M. Loebl, J. Matousek, “Expected length of the longest common subsequence for large alphabets”, Advances in Mathematics, 197:2 (2005), 480–498 | DOI | MR | Zbl
[3] G. S. Lueker, “Improved bounds on the average length of longest common subsequences”, Journal of the ACM, 56:3 (2009), 17 | DOI | MR | Zbl
[4] R. Bundschuh, “High precision simulations of the longest common subsequence problem”, The European Physical Journal B – Condensed Matter and Complex Systems, 22:4 (2001), 533–541 | DOI
[5] J. Boutet de Monvel, “Extensive simulations for longest common subsequences”, The European Physical Journal B – Condensed Matter and Complex Systems, 7:2 (1999), 293–308 | DOI
[6] R. Baeza-Yates, G. Navarro, R. Gavaldá, R. Schehing, “Bounding the expected length of the longest common subsequences and forests”, Theory of Computing Systems, 32:4 (1999), 435–452 | DOI | MR | Zbl
[7] Kang Ning, Kwok Pui Choi, Systematic assessment of the expected length, variance and distribution of Longest Common Subsequences, 2013, arXiv: 1306.4253
[8] J. D. Dixon, Longest common subsequences in binary sequences, 2013, arXiv: 1307.2796
[9] S. V. Znamenskij, “A picture of common subsequence length for two random strings over an alphabet of 4 symbols”, Program systems: theory and applications, 7:1(28) (2016), 201–208