The determinants over associative rings: a definition, properties, new formulas and a computational complexity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 443-448

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new definition for the determinants over an associative ring $\mathbf{Q}$ and study their properties. In particular, we obtain a new family of polynomial identities (computational formulas) for these determinants that contain up to $n!$ free variables.
Keywords: determinants, associative rings, the polarization theorem, polynomial identities.
Mots-clés : noncommutative variables
@article{JSFU_2016_9_4_a4,
     author = {Georgy P. Egorychev},
     title = {The determinants over associative rings: a definition, properties, new formulas and a computational complexity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {443--448},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/}
}
TY  - JOUR
AU  - Georgy P. Egorychev
TI  - The determinants over associative rings: a definition, properties, new formulas and a computational complexity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 443
EP  - 448
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/
LA  - en
ID  - JSFU_2016_9_4_a4
ER  - 
%0 Journal Article
%A Georgy P. Egorychev
%T The determinants over associative rings: a definition, properties, new formulas and a computational complexity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 443-448
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/
%G en
%F JSFU_2016_9_4_a4
Georgy P. Egorychev. The determinants over associative rings: a definition, properties, new formulas and a computational complexity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 443-448. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/