The determinants over associative rings: a definition, properties, new formulas and a computational complexity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 443-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new definition for the determinants over an associative ring $\mathbf{Q}$ and study their properties. In particular, we obtain a new family of polynomial identities (computational formulas) for these determinants that contain up to $n!$ free variables.
Keywords: determinants, associative rings, the polarization theorem, polynomial identities.
Mots-clés : noncommutative variables
@article{JSFU_2016_9_4_a4,
     author = {Georgy P. Egorychev},
     title = {The determinants over associative rings: a definition, properties, new formulas and a computational complexity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {443--448},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/}
}
TY  - JOUR
AU  - Georgy P. Egorychev
TI  - The determinants over associative rings: a definition, properties, new formulas and a computational complexity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 443
EP  - 448
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/
LA  - en
ID  - JSFU_2016_9_4_a4
ER  - 
%0 Journal Article
%A Georgy P. Egorychev
%T The determinants over associative rings: a definition, properties, new formulas and a computational complexity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 443-448
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/
%G en
%F JSFU_2016_9_4_a4
Georgy P. Egorychev. The determinants over associative rings: a definition, properties, new formulas and a computational complexity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 443-448. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a4/

[1] G. P. Egorychev, “A new family of polynomial identities for computing determinants”, Dokl. Math., 88:2 (2013), 510–512 | DOI | MR | Zbl

[2] G. P. Egorychev, “New polynomial identities for determinants over commutative rings”, Izvestia Irkutsk. Gos. Univ., Seriya Matematika, 5:4 (2012), 16–20 (in Russian)) | Zbl

[3] G. P. Egorychev, “A new family of polynomial identities for computing determinants”, Dokl. Akad. Nauk, 452:1 (2013), 1–3 (in Russian) | MR

[4] A. Barvinok, New permanet estimators via non-commutative determinants, 2000, arXiv: math/0007153v1 [math.CO]

[5] H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Publ., New York, 1995 | MR

[6] G. P. Egorychev, “New formulas for the permanent”, Soviet Math. Dokl., 254:4 (1980), 784–787 | MR | Zbl

[7] I. M. Gel'fand, V. S. Retakh, “Determinants of matrices over noncommutative rings”, Funktsional. Anal. i Prilozhen., 25:2 (1991), 13–25 (in Russian) | MR | Zbl

[8] V. Arvind, S. Srinivasa, “On the Hardness of Noncommutative Daterminant”, Electronic Colloquium on Computational Camplexity, 103 (2009), 1–18

[9] V. V. Kochergin, “About complexcity of computation one-terms of powers”, Diskretnyi Analiz i Issledovanie Operatsii, 27 (1994), 94–107 (in Russian) | MR | Zbl

[10] T. A. Muir, Treatise on the Theory of Determinants, Dover Publ., New York, 1960

[11] G. P. Egorychev, Discrete mathematics. Permanents, Siberian Federal University, Krasnoyarsk, 2007

[12] V. T. Filippov, “On the n-Lie algebra of Jacobians”, Sibirsk. Mat. Zh., 39:3 (1998), 660–669 (in Russian) | MR | Zbl

[13] A. P. Pozhidaev, “A simple factor-algebras and subalgebras of Jajkobians algebras”, Sibirsk. Mat. Zh., 39:3 (1998), 593–599 (in Russian) | MR | Zbl

[14] K. A. Zevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Acad. Press, 1982 | MR

[15] P. S. Kolesnikov, “About different definitions of algebraically closed skew fields”, Algebra and Logic, 40:4 (2001), 396–414 | DOI | MR | Zbl

[16] L. V. Sabinin, “Methods of Nonassociative Algebra in Differential Geometry”, Supplement to Russian translation of S. K. Kobayashi and K. Nomizu, Foundations of Differential Geometry, v. 1, Nauka, M., 1981 (in Russian) | MR