Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_4_a15, author = {Maxim Sidorov and Wolfgang Minker and Eugene S. Semenkin}, title = {Speech-based emotion recognition and speaker identification: static vs. dynamic mode of speech representation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {518--523}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a15/} }
TY - JOUR AU - Maxim Sidorov AU - Wolfgang Minker AU - Eugene S. Semenkin TI - Speech-based emotion recognition and speaker identification: static vs. dynamic mode of speech representation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 518 EP - 523 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a15/ LA - en ID - JSFU_2016_9_4_a15 ER -
%0 Journal Article %A Maxim Sidorov %A Wolfgang Minker %A Eugene S. Semenkin %T Speech-based emotion recognition and speaker identification: static vs. dynamic mode of speech representation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 518-523 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a15/ %G en %F JSFU_2016_9_4_a15
Maxim Sidorov; Wolfgang Minker; Eugene S. Semenkin. Speech-based emotion recognition and speaker identification: static vs. dynamic mode of speech representation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 518-523. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a15/
[1] P. Boersma, D. Weenink, Praat: doing phonetics by computer, [Computer program]. Version 5.3.50, retrieved 21 May 2013 http://www.praat.org/
[2] F. Burkhardt et al., “A database of German emotional speech”, Proceedings of the Interspeech Conference (2005), 1517–1520
[3] M. Eskenazi, A. Black, A. Raux, B. Langner, “Let's Go Lab: a platform for evaluation of spoken dialog systems with real world use”, Proceedings of Interspeech Conference (Brisbane, Australia, 2008)
[4] M. Grimm, K. Kroschel, S. Narayanan, “The Vera am Mittag German audio-visual emotional speech database”, Multimedia and Expo, IEEE International Conference (2008), 865–868
[5] M. Hall et al., “The WEKA Data Mining Software: An Update”, SIGKDD Explorations, 11:1 (2009), 10–18 | DOI
[6] I. Mierswa et al., “YALE: Rapid Prototyping for Complex Data Mining Tasks”, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-06) (2006)
[7] H. Mori et al., “Constructing a spoken dialogue corpus for studying paralinguistic information in expressive conversation and analyzing its statistical/acoustic characteristics”, Speech Communication, 53 (2011), 36–50 | DOI
[8] A. Schmitt, B. Schatz, W. Minker, “Modeling and predicting quality in spoken human-computer interaction”, Proceedings of the SIGDIAL 2011 Conference (2011), 173–184
[9] A. Schmitt, T. Heinroth, J. Liscombe, On NoMatchs, NoInputs and BargeIns: Do Non-Acoustic Features Support Anger Detection?, Proceedings of the SIGDIAL 2009 Conference (Association for Computational Linguistics, London, UK, 2009), 128–131
[10] B. Schuller et al., “Acoustic emotion recognition: A benchmark comparison of performances”, Automatic Speech Recognition and Understanding, IEEE Workshop (2009), 552–557
[11] M. Sidorov, A. Schmitt, S. Zablotskiy, W. Minker, “Survey of Automated Speaker Identification Methods”, Proceedings of Intellegent Environment 2013 (Athens, Greece, 2013)
[12] Y. Wang, I. Witten, “Modeling for optimal probability prediction”, Proceedings of the Nineteenth International Conference in Machine Learning (Sydney, Australia, 2002), 650–657 | Zbl