State-feedback control principles for inverted pendulum with hysteresis in suspension
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 498-509.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the mathematical model of the inverted pendulum with the hysteretic nonlinearity (in the form of a backlash) under state feedback control. The analytic results for the stability criteria as well as for the solution of the linearized equation are observed and analyzed. The theorems that determine the stabilization of the considered system are formulated and discussed. The question on the optimal control of the system under consideration is also discussed and the corresponding theorem is considered.
Keywords: hysteretic nonlinearity, backlash, feedback principles, optimal control.
@article{JSFU_2016_9_4_a13,
     author = {Mikhail E. Semenov and Zainib Hatif Abbas and Igor N. Ishchuk and Olesya I. Kanishcheva and Peter A. Meleshenko},
     title = {State-feedback control principles for inverted pendulum with hysteresis in suspension},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {498--509},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a13/}
}
TY  - JOUR
AU  - Mikhail E. Semenov
AU  - Zainib Hatif Abbas
AU  - Igor N. Ishchuk
AU  - Olesya I. Kanishcheva
AU  - Peter A. Meleshenko
TI  - State-feedback control principles for inverted pendulum with hysteresis in suspension
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 498
EP  - 509
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a13/
LA  - en
ID  - JSFU_2016_9_4_a13
ER  - 
%0 Journal Article
%A Mikhail E. Semenov
%A Zainib Hatif Abbas
%A Igor N. Ishchuk
%A Olesya I. Kanishcheva
%A Peter A. Meleshenko
%T State-feedback control principles for inverted pendulum with hysteresis in suspension
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 498-509
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a13/
%G en
%F JSFU_2016_9_4_a13
Mikhail E. Semenov; Zainib Hatif Abbas; Igor N. Ishchuk; Olesya I. Kanishcheva; Peter A. Meleshenko. State-feedback control principles for inverted pendulum with hysteresis in suspension. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 498-509. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a13/

[1] A. Stephenson, “On an induced stability”, Phil. Mag., 15 (1908), 233 | DOI | Zbl

[2] P. L. Kapitza, “Dynamic stability of a pendulum when its point of suspension vibrates”, Soviet Phys. JETP, 21 (1951), 588

[3] P. L. Kapitza, “Pendulum with a vibrating suspension”, Usp. Fiz. Nauk, 44 (1951), 7 (in Russian) | DOI

[4] E. I. Butikov, “Subharmonic resonances of the parametrically driven pendulum”, J. Phys. A: Math. Theor., 35 (2002), 6209

[5] A. Arinstein, M. Gitterman, Eur. J. Phys., 29 (2008), 355 | DOI

[6] E. I. Butikov, “An improved criterion for Kapitza's pendulum stability”, J. Phys. A: Math. Theor., 44 (2011), 295202 | DOI | MR | Zbl

[7] J. J. Wang, “Simulation studies of inverted pendulum based on PID controllers”, Simul. Model. Pract. Th., 19 (2011), 440 | DOI

[8] E. I. Butikov, “Oscillations of a simple pendulum with extremely large amplitudes”, Eur. J. Phys., 33 (2012), 1555 | DOI | Zbl

[9] F. L. Chernous'ko, S. A. Reshmin, “Time-Optimal Swing-Up Feedback Control of a Pendulum”, Nonlinear Dynam., 47 (2007), 65 | DOI | MR | Zbl

[10] S. A. Reshmin, F. L. Chernous'ko, “A Time-Optimal Control Synthesis for a Nonlinear Pendulum”, J. Comput. Sys. Sc. Int., 46 (2007), 9 | DOI | MR | Zbl

[11] K. D. Kim, P. Kumar, “Real-Time Middleware for Networked Control Systems and Application to an Unstable System”, IEEE Transactions on Control Systems Technology, 21 (2013), 1898 | DOI

[12] J. Huang, et al., “Modeling and Velocity Control for a Novel Narrow Vehicle Based on Mobile Wheeled Inverted Pendulum”, IEEE Transactions on Control Systems Technology, 21 (2013), 1607 | DOI

[13] K. J. Åström, K. Furuta, “Swinging up a pendulum by energy control”, Automatica, 36 (2000), 287 | DOI | MR

[14] R. A. Nelepin (ed.), Methods of investigation of automatic control nonlinear systems, Nauka, M., 1975 (in Russian)

[15] M. A. Krasnosel'skii, A. V. Pokrovskii, Systems with Hysteresis, Springer Verlag, 1989 | MR | Zbl

[16] M. E. Semenov, D. V. Shevlyakova, P. A. Meleshenko, “Inverted pendulum under hysteresis control: stability zones and periodic solutions”, Nonlinear Dynam., 75 (2014), 247 | DOI | MR

[17] M. E. Semenov, A. M. Solovyov, P. A. Meleshenko, “Elastic inverted pendulum with backlash in suspension: stabilization problem”, Nonlinear Dynam., 82 (2015), 677 | DOI | MR

[18] I. V. Miroshnik, Automatic control theory, Piter, St. Peterburg, 2006 (in Russian)