2D thermocapillary motion of three fluids in a flat channel
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 404-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional creeping motion of three immiscible, incompressible viscous fluids in a flat channel bounded by fixed solid walls, on which the temperature distribution is known, is investigated. The motion is induced only by the thermalcapillary forces beginning from the state of rest. Unsteady motion is described by finite analytic formulas obtained by Laplace transform in images. The evolution of the velocity fields to the stationary regime for specific liquids is obtained by the numerical inversion of Laplace transformation.
Keywords: thermocapillarity, mathematical modeling, numerical experiments.
Mots-clés : interface
@article{JSFU_2016_9_4_a0,
     author = {Viktor K. Andreev and Elena N. Cheremnykh},
     title = {2D thermocapillary motion of three fluids in a flat channel},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {404--415},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a0/}
}
TY  - JOUR
AU  - Viktor K. Andreev
AU  - Elena N. Cheremnykh
TI  - 2D thermocapillary motion of three fluids in a flat channel
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 404
EP  - 415
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a0/
LA  - en
ID  - JSFU_2016_9_4_a0
ER  - 
%0 Journal Article
%A Viktor K. Andreev
%A Elena N. Cheremnykh
%T 2D thermocapillary motion of three fluids in a flat channel
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 404-415
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a0/
%G en
%F JSFU_2016_9_4_a0
Viktor K. Andreev; Elena N. Cheremnykh. 2D thermocapillary motion of three fluids in a flat channel. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 404-415. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a0/

[1] V. K. Andreev, V. E. Zahvataev, E. A. Ryabitskii, Thermocapillary Instability, Nauka, Novosibirsk, 2000 (in Russian) | MR

[2] A. Nepomnyashii, I. Simanovskii, J.-C. Legros, Interfacial Convection in Multilayer System, Springer, New-York, 2006 | MR

[3] R. Narayanan, D. Schwabe, Interfacial Fluid Gynamics and Transport Processes, Springer-Verlag, Berlin–Heidelberg–New-York, 2003 | MR

[4] R. Kh. Zeytovnian, Convection in Fluids, Springer, Dordrecht–Heidelberg–London–New-York, 2009 | MR

[5] V. K. Andreev, The Birikh Solution of Convection Equations and it Some Generalization, Preprint No 1–10, Institut vychislitel'nogo modelirovaniya SB RAS, Krasnoyarsk, 2010 | Zbl

[6] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Radionov, Applications of Group-Theoretical Methods in Hydrodynamics, Kluwer Academic Publisher, Dordrecht–Boston–London, 1998 | MR | Zbl

[7] V. K. Andreev, Y. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachov, Mathematical Models of Convection, Walter de Gruyter GmbH and Co. KG, Berlin–Boston, 2012 | MR

[8] L. G. Napolitano, “Plane Marangoni–Poiseuille flow two immiscible fluids”, Acta Astronautica, 7:4–5 (1980), 461–478 | DOI | Zbl

[9] V. K. Andreev, V. B. Bekezhanova, “Stability of Non-isothermal Fluids”, J. of Siberian Federal University, Mathematics and Physics, 4:4 (2011), 434–444 (in Russian)

[10] V. K. Andreev, “On a conjugate initial boundary value problem”, Diff. equations, 2008, no. 5, 1–7

[11] V. K. Andreev, V. B. Bekezhanova, “Stability of Non-isothermal Fluids (Review)”, J. Appl. Mech. and Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl

[12] V. K. Andreev, E. N. Lemeshkova, “Evolution of the thermocapillary motion of three liquids in a plane layer”, Appl. Math. and Mech., 78:4 (2014), 485–492 | MR

[13] I. V. Denisova, “On the problem of thermocapillary convection for two incompressible fluids separated by a closed interface”, Prog. Nonlinear Differ. Equ. Appl., 61 (2005), 45–64 | MR | Zbl

[14] I. V. Denisova, “Thermocapillary convection problem for two compressible immiscible fluids”, Microgravity Sci. Technol., 20:3–4 (2008), 287–291 | DOI

[15] K. Hiemenz, “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Poliytech. J., 326 (1911), 321–440

[16] J. F. Brady, “A. Acrivos, Steady flow in a channel or tube with an accelerating surface velocity”, J. Fluid Mech., 112 (1981), 127–150 | DOI | MR | Zbl

[17] N. N. Bobkov, Yu. P. Gupalo, “The structure of the flow in the liquid layer and the spectrum of the boundary value problem for the nonlinear dependence of the surface tension from temperature”, Appl. Math. and Mech., 60:6 (1996), 1021–1028 | MR | Zbl

[18] Yu. P. Gupalo, Yu. S. Ryazantsev, “On a thermocapillary motion of a fluid with a free surface at the nonlinear dependence of the surface tension from temperature”, Fluid Dynamics, 1988, no. 5, 132–137 | Zbl

[19] Yu. P. Gupalo, Yu. S. Ryazantsev, A. V. Skvortsov, “Influence of thermal capillary forces on the fluid flow with free boundary”, Fluid Dynamics, 1989, no. 5, 3–7 | Zbl