The trigonometry of Harnack curves
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 347-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

Derive an explicit integral formula for the amoeba-to-coamoeba mapping in the case of polynomials that define Harnack curves. As a consequence obtain an exact description of the coamoebas of such polynomials. This formula can be viewed as a generalization of the familiar law of cosines that is used for solving triangles.
Keywords: Harnack curves, amoeba of polynomial, coamoeba of polynomial, Newton polygon, Ronkin function, law of cosines.
@article{JSFU_2016_9_3_a9,
     author = {Mikael Passare},
     title = {The trigonometry of {Harnack} curves},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {347--352},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/}
}
TY  - JOUR
AU  - Mikael Passare
TI  - The trigonometry of Harnack curves
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 347
EP  - 352
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/
LA  - en
ID  - JSFU_2016_9_3_a9
ER  - 
%0 Journal Article
%A Mikael Passare
%T The trigonometry of Harnack curves
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 347-352
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/
%G en
%F JSFU_2016_9_3_a9
Mikael Passare. The trigonometry of Harnack curves. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/

[1] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math., 151 (2000), 45–70 | DOI | MR | Zbl

[2] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimentional Determinants, Bikhäuser, Boston, 1994 | MR

[3] R. Kenyon, A. Okounkov, “Planar dimers and Harnack curves”, Duke Math J., 131 (2006), 499–524 | DOI | MR | Zbl

[4] G. Mikhalkin, A. Okounkov, “Geometry of planar log-fronts”, Mosc. Math. J., 7 (2007), 507–531 | MR | Zbl

[5] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math., 151 (2000), 309–326 | DOI | MR | Zbl

[6] G. Mikhalkin, H. Rullgård, “Amoebas of maximal area”, Internat. Math. Res. Notices, 2001, 441–451 | DOI | MR | Zbl

[7] L. Nilsson, M. Passare, “Mellin transforms of multivariate rational functions”, J. Geom. Anal., 23 (2013), 24–46 | DOI | MR | Zbl

[8] M. Passare, “How to compute $\sum 1/n^2$ by solving triangles”, Amer. Math. Monthly, 115 (2008), 745–752 | MR | Zbl

[9] M. Passare, H. Rullgård, “Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope”, Duke Math. J., 121 (2004), 281–507 | MR