The trigonometry of Harnack curves
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 347-352

Voir la notice de l'article provenant de la source Math-Net.Ru

Derive an explicit integral formula for the amoeba-to-coamoeba mapping in the case of polynomials that define Harnack curves. As a consequence obtain an exact description of the coamoebas of such polynomials. This formula can be viewed as a generalization of the familiar law of cosines that is used for solving triangles.
Keywords: Harnack curves, amoeba of polynomial, coamoeba of polynomial, Newton polygon, Ronkin function, law of cosines.
@article{JSFU_2016_9_3_a9,
     author = {Mikael Passare},
     title = {The trigonometry of {Harnack} curves},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {347--352},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/}
}
TY  - JOUR
AU  - Mikael Passare
TI  - The trigonometry of Harnack curves
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 347
EP  - 352
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/
LA  - en
ID  - JSFU_2016_9_3_a9
ER  - 
%0 Journal Article
%A Mikael Passare
%T The trigonometry of Harnack curves
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 347-352
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/
%G en
%F JSFU_2016_9_3_a9
Mikael Passare. The trigonometry of Harnack curves. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/