The trigonometry of Harnack curves
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 347-352
Voir la notice de l'article provenant de la source Math-Net.Ru
Derive an explicit integral formula for the amoeba-to-coamoeba mapping in the case of polynomials that define Harnack curves. As a consequence obtain an exact description of the coamoebas of such polynomials. This formula can be viewed as a generalization of the familiar law of cosines that is used for solving triangles.
Keywords:
Harnack curves, amoeba of polynomial, coamoeba of polynomial, Newton polygon, Ronkin function, law of cosines.
@article{JSFU_2016_9_3_a9,
author = {Mikael Passare},
title = {The trigonometry of {Harnack} curves},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {347--352},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/}
}
Mikael Passare. The trigonometry of Harnack curves. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/