@article{JSFU_2016_9_3_a9,
author = {Mikael Passare},
title = {The trigonometry of {Harnack} curves},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {347--352},
year = {2016},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/}
}
Mikael Passare. The trigonometry of Harnack curves. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a9/
[1] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math., 151 (2000), 45–70 | DOI | MR | Zbl
[2] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimentional Determinants, Bikhäuser, Boston, 1994 | MR
[3] R. Kenyon, A. Okounkov, “Planar dimers and Harnack curves”, Duke Math J., 131 (2006), 499–524 | DOI | MR | Zbl
[4] G. Mikhalkin, A. Okounkov, “Geometry of planar log-fronts”, Mosc. Math. J., 7 (2007), 507–531 | MR | Zbl
[5] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math., 151 (2000), 309–326 | DOI | MR | Zbl
[6] G. Mikhalkin, H. Rullgård, “Amoebas of maximal area”, Internat. Math. Res. Notices, 2001, 441–451 | DOI | MR | Zbl
[7] L. Nilsson, M. Passare, “Mellin transforms of multivariate rational functions”, J. Geom. Anal., 23 (2013), 24–46 | DOI | MR | Zbl
[8] M. Passare, “How to compute $\sum 1/n^2$ by solving triangles”, Amer. Math. Monthly, 115 (2008), 745–752 | MR | Zbl
[9] M. Passare, H. Rullgård, “Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope”, Duke Math. J., 121 (2004), 281–507 | MR