A-priory error of the initial conditions while solving the problem of the space vehicle navigation using pulsar signals
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 310-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of a space vehicles (SV) navigation while processing the moments of signals from several space sources of Roentgen illumination incoming taking into consideration random error of measurements is discussed in the paper. The device of processing realizes Kalman filter quasi-optimal sigma-point algorithm and forms at the output estimates of SV current coordinates and velocity. It is done estimates error analysis when a-priory input and measured date about the SV position and velocity differ. There is also analyzed intensity of measurement of incoming moments errors due to the observation properties compared with the initial values. Method of statistical tests allowed to estimate the influence of a-priory inaccuracy on the root-mean-square error of the SV coordinate and velocity estimation.
Keywords: autonomic navigation in space, non-linear filtration, sigma-point Kalman filter, error of estimation, a-priory data, Monte-Carlo method.
Mots-clés : pulsar
@article{JSFU_2016_9_3_a5,
     author = {Aleksey S. Konakov and Vladimir I. Tislenko and Vyacheslav V. Shavrin},
     title = {A-priory error of the initial conditions while solving the problem of the space vehicle navigation using pulsar signals},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {310--319},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a5/}
}
TY  - JOUR
AU  - Aleksey S. Konakov
AU  - Vladimir I. Tislenko
AU  - Vyacheslav V. Shavrin
TI  - A-priory error of the initial conditions while solving the problem of the space vehicle navigation using pulsar signals
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 310
EP  - 319
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a5/
LA  - en
ID  - JSFU_2016_9_3_a5
ER  - 
%0 Journal Article
%A Aleksey S. Konakov
%A Vladimir I. Tislenko
%A Vyacheslav V. Shavrin
%T A-priory error of the initial conditions while solving the problem of the space vehicle navigation using pulsar signals
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 310-319
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a5/
%G en
%F JSFU_2016_9_3_a5
Aleksey S. Konakov; Vladimir I. Tislenko; Vyacheslav V. Shavrin. A-priory error of the initial conditions while solving the problem of the space vehicle navigation using pulsar signals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 310-319. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a5/

[1] N. V. Mikhaylov, Autonomous navigation of space crafts using GNSS, Politechnika, St. Peterburg, 2014 (in Russian)

[2] M. C. Moreau, GPS receiver architecture for autonomous navigation in high Earth orbits, University of Colorado at Boulder, 2001

[3] Z. Xiong, “GEO satellite autonomous navigation using $X$-ray pulsar navigation and GNSS measurements”, International Journal of Innov. Comp. Inform. and Control, 8:5 (2012), 2965–2977

[4] X. Kai, W. Chunling, L. Liangdong, “The use of $X$-ray pulsars for aiding navigation of satellites in constellations”, Acta Astronautica, 64:4 (2009), 427–436 | DOI | MR

[5] J. Ali, F. Jiancheng, “SINS/ANS integration for augmented performance navigation solution using unscented Kalman filtering”, Aerospace Science and Technology, 10 (2006), 233–238 | DOI | Zbl

[6] S. I. Sheikh, D. J. Pines, “Recursive Estimation of Spacecraft Position and Velocity Using X-ray Pulsar Time of Arrival Measurements”, Navigation, 53:3 (2006), 149–166 | DOI | MR

[7] S. I. Sheikh, “Spacecraft navigation using $X$-ray pulsars”, Journal of Guidance, Control and Dynamics, 29:1 (2006), 49–63 | DOI

[8] J. Hanson, “Noise analysis for $X$-ray navigation systems”, Location and Navigation Symposium (IEEE/ION) (2008), 704–713

[9] T. J. Chester, Navigation Using $X$-ray Pulsars, NASA Techn. Rep. N81-27129, 1981, 22–25

[10] P. J. Buist, “Overview of Pulsar Navigation: Past, Present and Future Trends”, Navigation, 58:2 (2011), 153–164 | DOI

[11] A. S. Konakov, V. V. Shavrin, V. I. Tislenko, “Non-linear filtration algorithm synthesis in the problem of space devices navigation using pulsar and quasar signals”, Trudy XII Vseross. konf. o problemah otvetstvennosti, VSPU-2014 (Moscow, 2014), 3646–3656 (in Russian)

[12] A. P. Sage, J. L. Melse, Estimation theory with application to communication and control, McGraw-Hill, New York, 1972

[13] M. S. Iarlykov, Statistical theory of radio navigation, Radio i Sviaz, 1985 (in Russian)

[14] J. Liu, P. White, J. Ma, “Doppler/XNAV-integrated navigation system using small-area $X$-ray sensor”, IET Radar Sonar Navigation (2011), 1010–1017

[15] J. Wu, Z. Yang, N. Yang, “The accuracy analysis of the spacecraft autonomous navigation system based on $X$-ray pulsars”, Journal Systems and Control Engineering, 227 (2010), 121–128

[16] J. Julier, J. K. Uhlmann, “A new approach for filtering nonlinear systems”, Proceedings of the American Control Conference (1995), 1628–1632

[17] R. van der Merwe, E. Wan, “Sigma point Kalman filters for integrated navigation”, Proceedings of the 60th Annual Meeting of the Institute of Navigation (2004)