Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 296-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional problem of the fluid flows with a dynamic contact angle is studied in the case of an uniformly moving contact point. Mathematical modeling of the flows is carried out with the help of the Oberbeck–Boussinesq approximation of the Navier–Stokes equations. On the thermocapillary free boundary the kinematic, dynamic conditions and the heat exchange condition of third order are fulfilled. The slip conditions (conditions of proportionality of the tangential stresses to the difference of the tangential velocities of liquid and wall) are prescribed on the solid boundaries of the channel supporting by constant temperature. The dependence of the dynamic contact angle on the contact point velocity is investigated numerically. The results demonstrate the contact angle behavior and the different flow characteristics with respect to the various values of the contact point velocity, friction coefficients, gravity acceleration and an intensity of the thermal boundary regimes.
Keywords: convective flow, free boundary, dynamic contact angle, moving contact point, mathematical model, computational algorithm.
@article{JSFU_2016_9_3_a3,
     author = {Olga N. Goncharova and Alla V. Zakurdaeva},
     title = {Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {296--306},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/}
}
TY  - JOUR
AU  - Olga N. Goncharova
AU  - Alla V. Zakurdaeva
TI  - Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 296
EP  - 306
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/
LA  - en
ID  - JSFU_2016_9_3_a3
ER  - 
%0 Journal Article
%A Olga N. Goncharova
%A Alla V. Zakurdaeva
%T Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 296-306
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/
%G en
%F JSFU_2016_9_3_a3
Olga N. Goncharova; Alla V. Zakurdaeva. Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 296-306. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/

[1] D. Kröner, Aymptotische Entwicklungen für Strömungen von Flüssigkeiten mit freiem Rand und dynamischem Kontaktwinkel, Preprint 809, SFB72, Univ. Bonn, 1986

[2] C. Baiocchi, V. V. Pukhnachov, “Problems with unilateral constrains for the Navier–Stokes equations and the problem of dynamic contact angle”, J. Appl. Mech. Techn. Phys., 31:2 (1990), 185–197 | DOI | MR

[3] V. V. Pukhnachov, V. A. Solonnikov, “On the problem of dynamic contact angle”, J. Appl. Mathematics and Mechanics, 46:6 (1982), 771–779 | DOI | MR

[4] Y. D. Shikhmurzaev, “Mathematical modelling of wetting hydrodynamics”, Fluid Dyn. Res., 13 (1994), 45–64 | DOI

[5] V. A. Solonnikov, “Solvability of a problem on the plain motion of a heavy viscous incompressible capillary liquid partially filling a container”, Math. USSR, Izv., 14 (1980), 193–221 | DOI | Zbl

[6] V. S. Ajaev, G. M. Homsy, “Modeling shapes and dynamics of confined bubbles”, Annu. Rev. Fluid Mech., 38 (2006), 277–307 | DOI | MR | Zbl

[7] D. Kröner, “The flow of a fluid with a free boundary and dynamic contact angle”, ZAMM, 67 (1990), 304–306 | MR

[8] W. Doerfler, O. Goncharova, D. Kroener, “Fluid flow with dynamic contact angle: numerical simulation”, ZAMM, 82:3 (2002), 167–176 | 3.3.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] D. Kröner, “Asymptotic expansion for a flow with a dynamic contact angle”, The Navier–Stokes equations theory and numerical methods, Proc. Conf. (Oberwolfach, FRG, Sept. 18–24, 1988), Lect. Notes Math., 1431, eds. Heywood J., Masuda K., Rautmann R., Solonnikov V. A., Springer, Berlin, 1990, 49–59 | DOI | MR

[10] D. Kröner, W. M. Zajaczkowski, Free boundary flow with dynamic contact angle in 2D. Part 1: Existence for the linearized problem, Manuscript, Univ. Freiburg, 2000

[11] D. Kröner, W. M. Zajaczkowski, Free boundary flow with dynamic contact angle in 2D. Part 2: Existence, Manuscript, Univ. Freiburg, 2000

[12] D. Joseph, Stability of fluid motions, Springer Verlag, Berlin–Heidelberg–New York, 1976

[13] V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachov, Mathematical models of convection, Walter de Gruyter, Berlin–Boston, 2012 | MR

[14] V. V. Pukhnachov, Viscous fluid flow with free boundaries, Novosibirskii Gos. Universitet, Novosibirsk, 1989 (in Russian)

[15] A. S. Ovcharova, “Method of calculating steady-state flows of a viscous fluid with free boundary in vortex-stream function variables”, J. of Appl. Mech. Techn. Phys., 39:2 (1998), 211–219 | DOI | MR | Zbl

[16] Goncharova O. N., Pukhnachov V. V., Kabov O. A., “Solutions of special type describing the three dimensional thermocapillary flows with an interface”, Int. Journal of Heat and Mass Transfer, 54:5 (2012), 715–725 | DOI

[17] J. Douglas jr., J. E. Gunn, “A general formulation of alternating direction methods. I: Parabolic and hyperbolic problems”, Numer. Math., 6 (1964), 428–453 | DOI | MR | Zbl

[18] N. N. Yanenko, The method of fractional steps: the solution of problems of mathematical physics of several variables, Springer Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl

[19] P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1976 | MR

[20] G. I. Marchuk, Splitting methods, Nauka, M., 1988 (in Russian) | MR

[21] A. A. Samarsky, E. S. Nikolaev, Methods of solution of the grid equations, Nauka, M., 1978 (in Russian)

[22] Physical Values, Handbook, Energoatomizdat Publisher House, M., 1991 (in Russian)

[23] N. B. Vargaftik et al., Handbook of thermal conductivity of liquids and gases, CRC Press, 1994

[24] E. B. Gutoff, C. E. Kendrick, “Dynamic contact angles”, AIChE J., 28 (1982), 459–466 | DOI

[25] E. Ya. Gatapova, A. A. Semenov, D. V. Zaitsev, O. A. Kabov, “Evaporation of a sessile water drop on a heated surface with controlled wettability”, Colloids and surfaces A, Psysicochem. Eng. Aspects, 441 (2014), 776–785 | DOI