Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_3_a3, author = {Olga N. Goncharova and Alla V. Zakurdaeva}, title = {Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {296--306}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/} }
TY - JOUR AU - Olga N. Goncharova AU - Alla V. Zakurdaeva TI - Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 296 EP - 306 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/ LA - en ID - JSFU_2016_9_3_a3 ER -
%0 Journal Article %A Olga N. Goncharova %A Alla V. Zakurdaeva %T Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 296-306 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/ %G en %F JSFU_2016_9_3_a3
Olga N. Goncharova; Alla V. Zakurdaeva. Numerical investigation of a dependence of the dynamic contact angle on the contact point velocity in a problem of the convective fluid flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 296-306. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a3/
[1] D. Kröner, Aymptotische Entwicklungen für Strömungen von Flüssigkeiten mit freiem Rand und dynamischem Kontaktwinkel, Preprint 809, SFB72, Univ. Bonn, 1986
[2] C. Baiocchi, V. V. Pukhnachov, “Problems with unilateral constrains for the Navier–Stokes equations and the problem of dynamic contact angle”, J. Appl. Mech. Techn. Phys., 31:2 (1990), 185–197 | DOI | MR
[3] V. V. Pukhnachov, V. A. Solonnikov, “On the problem of dynamic contact angle”, J. Appl. Mathematics and Mechanics, 46:6 (1982), 771–779 | DOI | MR
[4] Y. D. Shikhmurzaev, “Mathematical modelling of wetting hydrodynamics”, Fluid Dyn. Res., 13 (1994), 45–64 | DOI
[5] V. A. Solonnikov, “Solvability of a problem on the plain motion of a heavy viscous incompressible capillary liquid partially filling a container”, Math. USSR, Izv., 14 (1980), 193–221 | DOI | Zbl
[6] V. S. Ajaev, G. M. Homsy, “Modeling shapes and dynamics of confined bubbles”, Annu. Rev. Fluid Mech., 38 (2006), 277–307 | DOI | MR | Zbl
[7] D. Kröner, “The flow of a fluid with a free boundary and dynamic contact angle”, ZAMM, 67 (1990), 304–306 | MR
[8] W. Doerfler, O. Goncharova, D. Kroener, “Fluid flow with dynamic contact angle: numerical simulation”, ZAMM, 82:3 (2002), 167–176 | 3.3.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[9] D. Kröner, “Asymptotic expansion for a flow with a dynamic contact angle”, The Navier–Stokes equations theory and numerical methods, Proc. Conf. (Oberwolfach, FRG, Sept. 18–24, 1988), Lect. Notes Math., 1431, eds. Heywood J., Masuda K., Rautmann R., Solonnikov V. A., Springer, Berlin, 1990, 49–59 | DOI | MR
[10] D. Kröner, W. M. Zajaczkowski, Free boundary flow with dynamic contact angle in 2D. Part 1: Existence for the linearized problem, Manuscript, Univ. Freiburg, 2000
[11] D. Kröner, W. M. Zajaczkowski, Free boundary flow with dynamic contact angle in 2D. Part 2: Existence, Manuscript, Univ. Freiburg, 2000
[12] D. Joseph, Stability of fluid motions, Springer Verlag, Berlin–Heidelberg–New York, 1976
[13] V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachov, Mathematical models of convection, Walter de Gruyter, Berlin–Boston, 2012 | MR
[14] V. V. Pukhnachov, Viscous fluid flow with free boundaries, Novosibirskii Gos. Universitet, Novosibirsk, 1989 (in Russian)
[15] A. S. Ovcharova, “Method of calculating steady-state flows of a viscous fluid with free boundary in vortex-stream function variables”, J. of Appl. Mech. Techn. Phys., 39:2 (1998), 211–219 | DOI | MR | Zbl
[16] Goncharova O. N., Pukhnachov V. V., Kabov O. A., “Solutions of special type describing the three dimensional thermocapillary flows with an interface”, Int. Journal of Heat and Mass Transfer, 54:5 (2012), 715–725 | DOI
[17] J. Douglas jr., J. E. Gunn, “A general formulation of alternating direction methods. I: Parabolic and hyperbolic problems”, Numer. Math., 6 (1964), 428–453 | DOI | MR | Zbl
[18] N. N. Yanenko, The method of fractional steps: the solution of problems of mathematical physics of several variables, Springer Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[19] P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1976 | MR
[20] G. I. Marchuk, Splitting methods, Nauka, M., 1988 (in Russian) | MR
[21] A. A. Samarsky, E. S. Nikolaev, Methods of solution of the grid equations, Nauka, M., 1978 (in Russian)
[22] Physical Values, Handbook, Energoatomizdat Publisher House, M., 1991 (in Russian)
[23] N. B. Vargaftik et al., Handbook of thermal conductivity of liquids and gases, CRC Press, 1994
[24] E. B. Gutoff, C. E. Kendrick, “Dynamic contact angles”, AIChE J., 28 (1982), 459–466 | DOI
[25] E. Ya. Gatapova, A. A. Semenov, D. V. Zaitsev, O. A. Kabov, “Evaporation of a sessile water drop on a heated surface with controlled wettability”, Colloids and surfaces A, Psysicochem. Eng. Aspects, 441 (2014), 776–785 | DOI