Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_3_a13, author = {Olga A. Shishkina}, title = {Multidimensional analog of the {Bernoulli} polynomials and its properties}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {384--392}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/} }
TY - JOUR AU - Olga A. Shishkina TI - Multidimensional analog of the Bernoulli polynomials and its properties JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 384 EP - 392 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/ LA - en ID - JSFU_2016_9_3_a13 ER -
%0 Journal Article %A Olga A. Shishkina %T Multidimensional analog of the Bernoulli polynomials and its properties %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 384-392 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/ %G en %F JSFU_2016_9_3_a13
Olga A. Shishkina. Multidimensional analog of the Bernoulli polynomials and its properties. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 384-392. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/
[1] J. Bernoulli, Ars Conjectandi, Basel, 1713
[2] L. Euler, Institutiones calculi differentialis, 1755; new printing: Birkhäuser, 1913
[3] J.-L. Raabe, Die Jacob Bernoullische Funktion, Zürich, 1848
[4] N. E. Nörlund, Differenzenrechnung, Berlin, 1924
[5] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics, A foundation for computer science, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1994 | MR | Zbl
[6] J. Riordan, Combinatorial identities, Reprint of the 1968 original, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979 | MR
[7] G.-C. Rota, B. D. Taylor, “The classical umbral calculus”, SIAM J. Math. Anal., 25:2 (1994), 694–711 | DOI | MR | Zbl
[8] C.-E. Fröberg, Lärobok i numerisk analys, Stockholm, 1962 | MR
[9] H. W. Gould, Combinatorial identities, Morgantown printing and binding co., Morgantown WV-USA, 1972 | MR | Zbl
[10] T. Ernst, “$q$-Bernoulli and $q$-Euler polynomials, an umbral approach”, International Journal of Difference Equations, 1:1 (2006), 31–80 | MR | Zbl
[11] L. Carlitz, “Bernoulli and Euler numbers and orthogonal polynomials”, Duke Math. J., 26 (1959), 694–711 | MR
[12] T. Ernst, The history of $q$-calculus and a new method, Uppsala, 2000
[13] D. H. Lehmer, “Lacunary recurrence formulas for the numbers of Bernoulli and Euler”, Ann. of Math., 36:3 (1935), 637–649 | DOI | MR | Zbl
[14] H. M. Srivastava, A. Pintér, “Remarks on some relationships between the Bernoulli and Euler polynomials”, Appl. Math. Lett., 17:4 (2004), 375–380 | DOI | MR | Zbl
[15] H. S. Vandiver, “Simple explicit expressions for generalized Bernoulli numbers of the first order”, Duke Math. J., 8 (1941), 575–584 | DOI | MR
[16] N. M. Temme, “Bernoulli polynomials old and new: Generalization and asymptotics”, CWI Quarterly, 1995, no. 1, 47–66 | MR | Zbl
[17] P. Appell, “Sur une classe de polynômes”, Annales Scientifiques de l'École Normale Supérieure Sér., 2:9 (1880), 119–144 | MR | Zbl
[18] M. Lenz, “Lattice points in polytopes, box splines, and Todd operators”, International Mathematics Research Notices, 2015, no. 14, 5289–5310 | DOI | MR | Zbl
[19] A. V. Pukhlikov, A. G. Khovanskii, “The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Mathematical Journal, 4:4 (1993), 789–812 | MR
[20] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl
[21] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of the American Mathematical Society, 10:4 (1997), 797–833 | DOI | MR | Zbl
[22] M. Vergne, “Residue formulae for Verlinde sums, and for number of integral points in convex rational polytopes”, European women in mathematics (Malta, 2001), World Sci. Publ., River Edge, NJ, 2003, 225–285 | DOI | MR | Zbl
[23] M. Brion, N. Berline, “Local Euler–Maclaurin formula for polytopes”, Moscow Mathematical Society Journal, 7 (2007), 355–383 | MR