Multidimensional analog of the Bernoulli polynomials and its properties
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 384-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a generalization of the Bernoulli numbers and polynomials to several variables, namely, we define the Bernoulli numbers associated with a rational cone and the corresponding Bernoulli polynomials. Also, we prove some properties of the Bernoulli polynomials.
Keywords: Bernoulli numbers and polynomials, generating functions, Todd operator, rational cone.
@article{JSFU_2016_9_3_a13,
     author = {Olga A. Shishkina},
     title = {Multidimensional analog of the {Bernoulli} polynomials and its properties},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {384--392},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/}
}
TY  - JOUR
AU  - Olga A. Shishkina
TI  - Multidimensional analog of the Bernoulli polynomials and its properties
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 384
EP  - 392
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/
LA  - en
ID  - JSFU_2016_9_3_a13
ER  - 
%0 Journal Article
%A Olga A. Shishkina
%T Multidimensional analog of the Bernoulli polynomials and its properties
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 384-392
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/
%G en
%F JSFU_2016_9_3_a13
Olga A. Shishkina. Multidimensional analog of the Bernoulli polynomials and its properties. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 384-392. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a13/

[1] J. Bernoulli, Ars Conjectandi, Basel, 1713

[2] L. Euler, Institutiones calculi differentialis, 1755; new printing: Birkhäuser, 1913

[3] J.-L. Raabe, Die Jacob Bernoullische Funktion, Zürich, 1848

[4] N. E. Nörlund, Differenzenrechnung, Berlin, 1924

[5] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics, A foundation for computer science, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1994 | MR | Zbl

[6] J. Riordan, Combinatorial identities, Reprint of the 1968 original, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979 | MR

[7] G.-C. Rota, B. D. Taylor, “The classical umbral calculus”, SIAM J. Math. Anal., 25:2 (1994), 694–711 | DOI | MR | Zbl

[8] C.-E. Fröberg, Lärobok i numerisk analys, Stockholm, 1962 | MR

[9] H. W. Gould, Combinatorial identities, Morgantown printing and binding co., Morgantown WV-USA, 1972 | MR | Zbl

[10] T. Ernst, “$q$-Bernoulli and $q$-Euler polynomials, an umbral approach”, International Journal of Difference Equations, 1:1 (2006), 31–80 | MR | Zbl

[11] L. Carlitz, “Bernoulli and Euler numbers and orthogonal polynomials”, Duke Math. J., 26 (1959), 694–711 | MR

[12] T. Ernst, The history of $q$-calculus and a new method, Uppsala, 2000

[13] D. H. Lehmer, “Lacunary recurrence formulas for the numbers of Bernoulli and Euler”, Ann. of Math., 36:3 (1935), 637–649 | DOI | MR | Zbl

[14] H. M. Srivastava, A. Pintér, “Remarks on some relationships between the Bernoulli and Euler polynomials”, Appl. Math. Lett., 17:4 (2004), 375–380 | DOI | MR | Zbl

[15] H. S. Vandiver, “Simple explicit expressions for generalized Bernoulli numbers of the first order”, Duke Math. J., 8 (1941), 575–584 | DOI | MR

[16] N. M. Temme, “Bernoulli polynomials old and new: Generalization and asymptotics”, CWI Quarterly, 1995, no. 1, 47–66 | MR | Zbl

[17] P. Appell, “Sur une classe de polynômes”, Annales Scientifiques de l'École Normale Supérieure Sér., 2:9 (1880), 119–144 | MR | Zbl

[18] M. Lenz, “Lattice points in polytopes, box splines, and Todd operators”, International Mathematics Research Notices, 2015, no. 14, 5289–5310 | DOI | MR | Zbl

[19] A. V. Pukhlikov, A. G. Khovanskii, “The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Mathematical Journal, 4:4 (1993), 789–812 | MR

[20] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl

[21] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of the American Mathematical Society, 10:4 (1997), 797–833 | DOI | MR | Zbl

[22] M. Vergne, “Residue formulae for Verlinde sums, and for number of integral points in convex rational polytopes”, European women in mathematics (Malta, 2001), World Sci. Publ., River Edge, NJ, 2003, 225–285 | DOI | MR | Zbl

[23] M. Brion, N. Berline, “Local Euler–Maclaurin formula for polytopes”, Moscow Mathematical Society Journal, 7 (2007), 355–383 | MR