Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_3_a10, author = {Pavel S. Petrenko}, title = {Local $R$-observability of differential-algebraic equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {353--363}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a10/} }
TY - JOUR AU - Pavel S. Petrenko TI - Local $R$-observability of differential-algebraic equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 353 EP - 363 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a10/ LA - en ID - JSFU_2016_9_3_a10 ER -
Pavel S. Petrenko. Local $R$-observability of differential-algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 353-363. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a10/
[1] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, SIAM, 1996 | MR | Zbl
[2] L. Dai, Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N.Y., 1989 | DOI | MR
[3] I. V. Gaishun, Introduction to the theory of linear nonstationary systems, Natsional'naya Akademiya Nauk Belarusi, Institut Matematiki, 1999 (in Russian) | MR | Zbl
[4] M. Gerdin, 14-th IFAC Symposium on System Identification, SYSID, Report No LiTH-ISY-R-2711 (2006)
[5] A. A. Shcheglova, P. S. Petrenko, “The R-observability and R-controllability of linear differential-algebraic systems”, Izvestiya VUZ. Matematika, 56:3 (2012), 66–82 | MR | Zbl
[6] A. A. Shcheglova, “Controllability of nonlinear algebraic differential systems”, Automation and Remote Control, 69:10 (2008), 1700–1722 | DOI | MR | Zbl
[7] G. E. Shilov, Analysis, v. 1–2, Nauka, M., 1972 (in Russian) | Zbl
[8] F. R. Gantmacher, The theory of matrices, Chelsy Publishing Company, New York, 1959 | MR
[9] S. L. Campbell, L. R. Petzold, “Canonical forms and solvable singular systems of differential equations”, SIAM J. Alg. Disc. Meth., 4 (1983), 517–522 | DOI | MR