Local $R$-observability of differential-algebraic equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 353-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear system of first order ordinary differential equations is considered. The system is unresolved with respect to the derivative of the unknown function and it is identically degenerate in the domain. An arbitrarily high unresolvability index is admited. Analysis is carried out under assumptions that ensure the existence of a global structural form that separates "algebraic" and "differential" subsystems. Local $R$-observability conditions are obtained by linear approximation of the system.
Keywords: local observability, differential-algebraic equation, observable nonlinear system.
@article{JSFU_2016_9_3_a10,
     author = {Pavel S. Petrenko},
     title = {Local $R$-observability of differential-algebraic equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {353--363},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a10/}
}
TY  - JOUR
AU  - Pavel S. Petrenko
TI  - Local $R$-observability of differential-algebraic equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 353
EP  - 363
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a10/
LA  - en
ID  - JSFU_2016_9_3_a10
ER  - 
%0 Journal Article
%A Pavel S. Petrenko
%T Local $R$-observability of differential-algebraic equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 353-363
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a10/
%G en
%F JSFU_2016_9_3_a10
Pavel S. Petrenko. Local $R$-observability of differential-algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 353-363. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a10/

[1] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, SIAM, 1996 | MR | Zbl

[2] L. Dai, Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N.Y., 1989 | DOI | MR

[3] I. V. Gaishun, Introduction to the theory of linear nonstationary systems, Natsional'naya Akademiya Nauk Belarusi, Institut Matematiki, 1999 (in Russian) | MR | Zbl

[4] M. Gerdin, 14-th IFAC Symposium on System Identification, SYSID, Report No LiTH-ISY-R-2711 (2006)

[5] A. A. Shcheglova, P. S. Petrenko, “The R-observability and R-controllability of linear differential-algebraic systems”, Izvestiya VUZ. Matematika, 56:3 (2012), 66–82 | MR | Zbl

[6] A. A. Shcheglova, “Controllability of nonlinear algebraic differential systems”, Automation and Remote Control, 69:10 (2008), 1700–1722 | DOI | MR | Zbl

[7] G. E. Shilov, Analysis, v. 1–2, Nauka, M., 1972 (in Russian) | Zbl

[8] F. R. Gantmacher, The theory of matrices, Chelsy Publishing Company, New York, 1959 | MR

[9] S. L. Campbell, L. R. Petzold, “Canonical forms and solvable singular systems of differential equations”, SIAM J. Alg. Disc. Meth., 4 (1983), 517–522 | DOI | MR