Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_2_a9, author = {Eugeny A. Novikov and Mikhail V. Rybkov}, title = {Application of explicit methods with extended stability regions for solving stiff problems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {209--219}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/} }
TY - JOUR AU - Eugeny A. Novikov AU - Mikhail V. Rybkov TI - Application of explicit methods with extended stability regions for solving stiff problems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 209 EP - 219 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/ LA - en ID - JSFU_2016_9_2_a9 ER -
%0 Journal Article %A Eugeny A. Novikov %A Mikhail V. Rybkov %T Application of explicit methods with extended stability regions for solving stiff problems %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 209-219 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/ %G en %F JSFU_2016_9_2_a9
Eugeny A. Novikov; Mikhail V. Rybkov. Application of explicit methods with extended stability regions for solving stiff problems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/
[1] E. A. Novikov, Explicit methods for stiff systems, Nauka, Novosibirsk, 1997 (in Russian) | MR | Zbl
[2] E. A. Novikov, Yu. V. Shornikov, Computer simulation of stiff hybrid systems, Izdat. NSTU, Novosibirsk, 2012 (in Russian)
[3] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations, v. I, Nonstiff problems, Springer, Berlin, 1987 | MR | Zbl
[4] E. Hairer, G. Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer, Berlin, 1996 | MR | Zbl
[5] V. A. Novikov, E. A. Novikov, “Raising the efficiency of algorithms for the integration of ordinary differential equations at the expense of loss of stability”, USSR Computational Mathematics and Mathematical Physics, 25:4 (1985), 39–43 | DOI | MR | Zbl
[6] E. A. Novikov, “Variable order and step algorithm based on a stages of Runge–Kutta method of third order of accuracy”, Izv. Saratov Univ. (N.S.), Ser. Mat. Meh. Inform., 11:3(1) (2011), 46–53 (in Russian)
[7] E. A. Novikov, M. V. Rybkov, “The numerical algorithm of constructing of stability regions for explicit methods”, Sistemy upravleniya i informatsionye tehnologii, 55:1.1 (2014), 173–177 (in Russian)
[8] E. A. Novikov, “The construction of the stability regions for the explicit Runge–Kutta methods”, Vychislitelnye metody i programirovanie, 10 (2009), 248–257 (in Russian)
[9] V. A. Novikov, E. A. Novikov, “Control of the stability of explicit one-step methods of integrating ordinary differential equations”, Soviet Math. Dokl., 30:1 (1984), 211–215 | Zbl
[10] G. Dahlquist, “A special stability problem for linear multistep methods”, BIT, 3 (1963), 23–43 | DOI | MR
[11] K. Dekker, J. G. Verwer, Stability of Runge–Kutta methods for stiff nonlinear differential equations, North Holland, Amsterdam, 1984 | MR | Zbl
[12] G. Korn, T. Korn, Mathematical handbook, Nauka, M., 1970 (in Russian)
[13] A. E. Novikov, E. A. Novikov, “L-stable (2,1)-method for stiff nonautonomius problem solving”, Vestnik KazNU. Ser. 13. Vychislitelnye texnologii, 58:3 (2008), 477–482 (in Russian) | MR
[14] W. H. Enright, T. E. Hull, “Comparing numerical methods for the solutions of stiff systems of ODE's”, BIT, 15 (1975), 10–48 | DOI | Zbl