Application of explicit methods with extended stability regions for solving stiff problems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 209-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm is developed to determine coefficients of the stability polynomials such that the explicit Runge–Kutta methods have a predetermined shape and size of the stability region. Inequalities for accuracy and stability control are obtained. The impact of the stability control on efficiency of explicit methods to solving stiff problems is shown. Numerical calculations confirm that the three-step method of the first order with extended stability region is more efficient than the traditional three-stage method of the third order.
Keywords: stiff problem, explicit methods, stability region, accuracy and stability control.
@article{JSFU_2016_9_2_a9,
     author = {Eugeny A. Novikov and Mikhail V. Rybkov},
     title = {Application of explicit methods with extended stability regions for solving stiff problems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/}
}
TY  - JOUR
AU  - Eugeny A. Novikov
AU  - Mikhail V. Rybkov
TI  - Application of explicit methods with extended stability regions for solving stiff problems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 209
EP  - 219
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/
LA  - en
ID  - JSFU_2016_9_2_a9
ER  - 
%0 Journal Article
%A Eugeny A. Novikov
%A Mikhail V. Rybkov
%T Application of explicit methods with extended stability regions for solving stiff problems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 209-219
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/
%G en
%F JSFU_2016_9_2_a9
Eugeny A. Novikov; Mikhail V. Rybkov. Application of explicit methods with extended stability regions for solving stiff problems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a9/

[1] E. A. Novikov, Explicit methods for stiff systems, Nauka, Novosibirsk, 1997 (in Russian) | MR | Zbl

[2] E. A. Novikov, Yu. V. Shornikov, Computer simulation of stiff hybrid systems, Izdat. NSTU, Novosibirsk, 2012 (in Russian)

[3] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations, v. I, Nonstiff problems, Springer, Berlin, 1987 | MR | Zbl

[4] E. Hairer, G. Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer, Berlin, 1996 | MR | Zbl

[5] V. A. Novikov, E. A. Novikov, “Raising the efficiency of algorithms for the integration of ordinary differential equations at the expense of loss of stability”, USSR Computational Mathematics and Mathematical Physics, 25:4 (1985), 39–43 | DOI | MR | Zbl

[6] E. A. Novikov, “Variable order and step algorithm based on a stages of Runge–Kutta method of third order of accuracy”, Izv. Saratov Univ. (N.S.), Ser. Mat. Meh. Inform., 11:3(1) (2011), 46–53 (in Russian)

[7] E. A. Novikov, M. V. Rybkov, “The numerical algorithm of constructing of stability regions for explicit methods”, Sistemy upravleniya i informatsionye tehnologii, 55:1.1 (2014), 173–177 (in Russian)

[8] E. A. Novikov, “The construction of the stability regions for the explicit Runge–Kutta methods”, Vychislitelnye metody i programirovanie, 10 (2009), 248–257 (in Russian)

[9] V. A. Novikov, E. A. Novikov, “Control of the stability of explicit one-step methods of integrating ordinary differential equations”, Soviet Math. Dokl., 30:1 (1984), 211–215 | Zbl

[10] G. Dahlquist, “A special stability problem for linear multistep methods”, BIT, 3 (1963), 23–43 | DOI | MR

[11] K. Dekker, J. G. Verwer, Stability of Runge–Kutta methods for stiff nonlinear differential equations, North Holland, Amsterdam, 1984 | MR | Zbl

[12] G. Korn, T. Korn, Mathematical handbook, Nauka, M., 1970 (in Russian)

[13] A. E. Novikov, E. A. Novikov, “L-stable (2,1)-method for stiff nonautonomius problem solving”, Vestnik KazNU. Ser. 13. Vychislitelnye texnologii, 58:3 (2008), 477–482 (in Russian) | MR

[14] W. H. Enright, T. E. Hull, “Comparing numerical methods for the solutions of stiff systems of ODE's”, BIT, 15 (1975), 10–48 | DOI | Zbl