Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_2_a3, author = {Viktor M. Belolipetskii and Svetlana N. Genova}, title = {A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {158--165}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/} }
TY - JOUR AU - Viktor M. Belolipetskii AU - Svetlana N. Genova TI - A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 158 EP - 165 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/ LA - en ID - JSFU_2016_9_2_a3 ER -
%0 Journal Article %A Viktor M. Belolipetskii %A Svetlana N. Genova %T A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 158-165 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/ %G en %F JSFU_2016_9_2_a3
Viktor M. Belolipetskii; Svetlana N. Genova. A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 158-165. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/
[1] A. M. Meirmanov, The Stefan Problem, Nauka, Novosibirsk, 1986 | MR
[2] O. A. Anisimov, F. E. Nelson, “Forecast of changes in permafrost conditions in the Northern hemisphere: application of results of balance and transitive calculations on models of the General circulation of the atmosphere”, Kriosfera Zemli, 1998, no. 2, 53–57 (in Russian) | MR
[3] S. P. Malevsky-Malevich, E. K. Molkentin, E. D. Nadezhina, “Model estimates of the evolution of permafrost and the distribution of the layer of seasonal thaw, depending on the climatic conditions in the Northern regions of West Siberia”, Kriosfera Zemli, 4:4 (2000), 49–57 (in Russian)
[4] M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, I. I. Mokhov, “Modeling of changes in temperature and hydrological regimes of subsurface permafrost, using the climate data (reanalysis)”, Kriosfera Zemli, 2007, no. 4, 65–69 (in Russian)
[5] T. S. Sazonova, V. E. Romanovsky, “A model for regionalscale estimation of temporal and spatial variability of activelayer thickness and mean annual ground temperatures”, Permafrost and Periglacial Processes, 2003, no. 2, 125–140 | DOI | MR
[6] L. E. Goodrich, “The influence of snow cover on the ground thermal regime”, Canadian Geotechnical Journal, 19:4 (1982), 421–432 | DOI
[7] D. J. Nicolsky, V. E. Romanovsky, V. A. Alekseev, D. M. Lawrence, “Improved modeling of permafrost dynamics in a GCM land-surface scheme”, Geophysical Research Letters, 34:8 (2007), L08501 | DOI
[8] T. J. Zhang, O. W. Frauenfeld, M. C. Serreze, A. Etringer, C. Oelke, J. McCreight, R. G. Barry, D. Gilichinsky, D. Q. Yang, H. C. Ye, F. Ling, S. Chudinova, “Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin”, Journal of Geophysical Research-Atmospheres, 110 (2005), D16101 | DOI
[9] V. M. Belolipetskii, S. N. Genova, “Numerical model of dynamics Permafrost in the bog-lake landscapes”, Fundamental Problems of Water Resources, Proceedings of IV Russian Scientific Conference, Water Problems Institute RAS, M., 2015, 95–97
[10] V. M. Belolipetskii, S. N. Genova, V. B. Tugovikov, Y. I. Shokin, Numerical modelling of problems of hydro-icethermics of currents, SB RAS, Novosibirsk, 1994 (in Russian)
[11] M. S. Krass, V. G. Merzlikin, Radiation physics of snow and ice, Gidrometeoizdat, L., 1990 (in Russian)
[12] V. I. Polezhaev, A. V. Bune, N. A. Verezub, etc., Mathematical modeling of convective heat and mass transfer based on the Navier–Stokes equations, Nauka, M., 1987 (in Russian)