A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 158-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theoretical description of the temperature field in the soils during freezing or thawing is carried out using solutions of Stefan's problem. A mathematical model based on the equations of thermal conductivity for frozen and thawed layers. We consider the areas in which there are lakes or bogs. We distinguished the following layers in the vertical structure of the zone of permafrost: thawed soil, frozen soil, water, ice, snow. We offer a simplified numerical algorithm for solving of one-dimensional (in the vertical direction) heat conduction problems with moving boundaries of phase transition with the formation of new and cancellation of existing layers. A simplified numerical algorithm for solving one-dimensional (in the vertical direction) heat conduction problems with moving boundaries of phase transition with the formation of new and cancellation of existing layers is offering.
Keywords: permafrost, Stefan's problem, thawed and frozen soil, small dimensional numerical model.
@article{JSFU_2016_9_2_a3,
     author = {Viktor M. Belolipetskii and Svetlana N. Genova},
     title = {A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {158--165},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/}
}
TY  - JOUR
AU  - Viktor M. Belolipetskii
AU  - Svetlana N. Genova
TI  - A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 158
EP  - 165
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/
LA  - en
ID  - JSFU_2016_9_2_a3
ER  - 
%0 Journal Article
%A Viktor M. Belolipetskii
%A Svetlana N. Genova
%T A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 158-165
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/
%G en
%F JSFU_2016_9_2_a3
Viktor M. Belolipetskii; Svetlana N. Genova. A numerical model of the seasonal thawing of permafrost in the swamp-lake landscapes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 158-165. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a3/

[1] A. M. Meirmanov, The Stefan Problem, Nauka, Novosibirsk, 1986 | MR

[2] O. A. Anisimov, F. E. Nelson, “Forecast of changes in permafrost conditions in the Northern hemisphere: application of results of balance and transitive calculations on models of the General circulation of the atmosphere”, Kriosfera Zemli, 1998, no. 2, 53–57 (in Russian) | MR

[3] S. P. Malevsky-Malevich, E. K. Molkentin, E. D. Nadezhina, “Model estimates of the evolution of permafrost and the distribution of the layer of seasonal thaw, depending on the climatic conditions in the Northern regions of West Siberia”, Kriosfera Zemli, 4:4 (2000), 49–57 (in Russian)

[4] M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, I. I. Mokhov, “Modeling of changes in temperature and hydrological regimes of subsurface permafrost, using the climate data (reanalysis)”, Kriosfera Zemli, 2007, no. 4, 65–69 (in Russian)

[5] T. S. Sazonova, V. E. Romanovsky, “A model for regionalscale estimation of temporal and spatial variability of activelayer thickness and mean annual ground temperatures”, Permafrost and Periglacial Processes, 2003, no. 2, 125–140 | DOI | MR

[6] L. E. Goodrich, “The influence of snow cover on the ground thermal regime”, Canadian Geotechnical Journal, 19:4 (1982), 421–432 | DOI

[7] D. J. Nicolsky, V. E. Romanovsky, V. A. Alekseev, D. M. Lawrence, “Improved modeling of permafrost dynamics in a GCM land-surface scheme”, Geophysical Research Letters, 34:8 (2007), L08501 | DOI

[8] T. J. Zhang, O. W. Frauenfeld, M. C. Serreze, A. Etringer, C. Oelke, J. McCreight, R. G. Barry, D. Gilichinsky, D. Q. Yang, H. C. Ye, F. Ling, S. Chudinova, “Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin”, Journal of Geophysical Research-Atmospheres, 110 (2005), D16101 | DOI

[9] V. M. Belolipetskii, S. N. Genova, “Numerical model of dynamics Permafrost in the bog-lake landscapes”, Fundamental Problems of Water Resources, Proceedings of IV Russian Scientific Conference, Water Problems Institute RAS, M., 2015, 95–97

[10] V. M. Belolipetskii, S. N. Genova, V. B. Tugovikov, Y. I. Shokin, Numerical modelling of problems of hydro-icethermics of currents, SB RAS, Novosibirsk, 1994 (in Russian)

[11] M. S. Krass, V. G. Merzlikin, Radiation physics of snow and ice, Gidrometeoizdat, L., 1990 (in Russian)

[12] V. I. Polezhaev, A. V. Bune, N. A. Verezub, etc., Mathematical modeling of convective heat and mass transfer based on the Navier–Stokes equations, Nauka, M., 1987 (in Russian)