Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_2_a12, author = {Roman B. Sergienko and Muhammad Shan and Wolfgang Minker and Eugene S. Semenkin}, title = {Topic categorization based on collectives of term weighting methods for natural language call routing}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {235--245}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a12/} }
TY - JOUR AU - Roman B. Sergienko AU - Muhammad Shan AU - Wolfgang Minker AU - Eugene S. Semenkin TI - Topic categorization based on collectives of term weighting methods for natural language call routing JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 235 EP - 245 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a12/ LA - en ID - JSFU_2016_9_2_a12 ER -
%0 Journal Article %A Roman B. Sergienko %A Muhammad Shan %A Wolfgang Minker %A Eugene S. Semenkin %T Topic categorization based on collectives of term weighting methods for natural language call routing %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 235-245 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a12/ %G en %F JSFU_2016_9_2_a12
Roman B. Sergienko; Muhammad Shan; Wolfgang Minker; Eugene S. Semenkin. Topic categorization based on collectives of term weighting methods for natural language call routing. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 235-245. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a12/
[1] B. Suhm, J. Bers, D. McCarthy, B. Freeman, D. Getty, K. Godfrey, P. Peterson, “A Comparative Study of Speech in the Call Center: Natural Language Call Routing vs. Touch-Tone Menus”, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, 2002, 283–290
[2] C. Lee, S. Jung, S. Kim, G. Lee, “Example-Based Dialog Modeling for Practical Multi-Domain Dialog System”, Speech Communication, 51:5 (2009), 466–484 | DOI
[3] F. Sebastiani, “Machine Learning in Automated Text Categorization”, ACM computing surveys (CSUR), 34:1 (2002), 1–47 | DOI
[4] G. Salton, Ch.Buckley, “Term-Weighting Approaches in Automatic Text Retrieval”, Information processing management, 24:5 (1988), 513–523 | DOI
[5] F. Debole, F. Sebastiani, “Supervised Term Weighting for Automated Text Categorization”, Text mining and its applications, 2004, 81–97 | DOI
[6] P. Soucy, G. Mineau, “Beyond TFIDF Weighting for Text Categorization in the Vector Space Model”, IJCAI, 5 (2005), 1130–1135
[7] H. Xu, Ch. Li, “A Novel Term Weighting Scheme for Automated Text Categorization”, Seventh International Conference on Intelligent Systems Design and Applications, ISDA 2007, 2007, 759–764
[8] M. Lan, Ch. Tan, J. Su, Y. Lu, “Supervised and Traditional Term Weighting Methods for Automatic Text Categorization”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:4 (2009), 721–735 | DOI
[9] Y. Ko, “A Study of Term Weighting Schemes Using Class Information for Text Classification”, Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval (2012), 1029–1030
[10] T. Gasanova, R. Sergienko, E. Semenkin, W. Minker, “Dimension reduction with coevolutionary genetic algorithm for text classification”, Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2014, 2014, 215–222
[11] T. Joachims, Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms, 2002
[12] T. Joachims, A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization, 1996
[13] L. Breiman, “Bagging Predictors”, Machine learning, 24:2 (1996), 123–140 | MR | Zbl
[14] R. Schapire, Y. Singer, “BoosTexter: A Boosting-Based System for Text Categorization”, Machine learning, 39:2–3 (2000), 135–168 | DOI | Zbl
[15] D. Morariu, L. Vintan, V. Tresp, “Meta-Classification Using SVM Classifiers for Text Documents”, Intl. Jrnl. of Applied Mathematics and Computer Sciences, 1:1 (2005)
[16] W. Cohen, “Fast Effective Rule Induction”, Proceedings of the twelfth international conference on machine learning (1995), 115–123
[17] Y. Yang and J. Pedersen, “A Comparative Study on Feature Selection in Text Categorization”, ICML, 97 (1997), 412–420
[18] E. Han, G. Karypis, V. Kumar, Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification, 2001
[19] B. Baharudin, L. Lee, K. Khan, “A Review of Machine Learning Algorithms for Text-Documents Classification”, Journal of advances in information technology, 1:1 (2010), 4–20 | DOI
[20] C. Goutte, E. Gaussier, “A Probabilistic Interpretation of Precision, Recall and F-score, with Implication for Evaluation”, Proceedings of the 27th European conference on Advances in Information Retrieval Research, Springer-Verlag, Berlin, 2005, 345–359 | DOI
[21] M. Rogati, Y. Yiming, “High-Performing Feature Selection for Text Classification”, Proceedings of the eleventh international conference on Information and knowledge management (2002), 659–661
[22] E. Gabrilovich, Sh. Markovitch, “Text Categorization with Many Redundant Features: Using Aggressive Feature Selection to Make SVMs Competitive with C4. 5”, Proceedings of the twenty-first international conference on Machine learning (2004), 41