Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_1_a8, author = {Lev B. Ryashko and Evdokia S. Slepukhina}, title = {Stochastic generation of bursting oscillations in the three-dimensional {Hindmarsh--Rose} model}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {79--89}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/} }
TY - JOUR AU - Lev B. Ryashko AU - Evdokia S. Slepukhina TI - Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh--Rose model JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 79 EP - 89 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/ LA - en ID - JSFU_2016_9_1_a8 ER -
%0 Journal Article %A Lev B. Ryashko %A Evdokia S. Slepukhina %T Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh--Rose model %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 79-89 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/ %G en %F JSFU_2016_9_1_a8
Lev B. Ryashko; Evdokia S. Slepukhina. Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh--Rose model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/
[1] J. L. Hindmarsh, R. M. Rose, “A model of neuronal bursting using three coupled first order differential equations”, Proc. Royal Soc. Lond., B, Biol. Sci., 221:1222 (1984), 87–102 | DOI
[2] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, 2007 | MR
[3] X.-J. Wang, “Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle”, Phys. D, 63:1–4 (1993), 263–274 | DOI | MR
[4] J. M. Gonzalez-Miranda, “Complex bifurcation Structures in the Hindmarsh–Rose Neuron Model”, Int. J. Bifurcation Chaos, 17:9 (2007), 3071–3083 | DOI | MR | Zbl
[5] G. Innocenti et al., “Dynamical phases of the Hindmarsh–Rose neuronal model: Studies of the transition from bursting to spiking chaos”, Chaos, 17 (2007), 043128 | DOI | MR | Zbl
[6] A. Shilnikov, M. Kolomiets, “Methods of the qualitative theory for the Hindmarsh–Rose Model: A case study – A Tutorial”, Int. J. Bifurcation Chaos, 18:8 (2008), 2141–2168 | DOI | MR | Zbl
[7] M. Desroches, T. Kaper, M. Krupa, “Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster”, Chaos, 23:4 (2013), 046106 | DOI | MR
[8] R. Barrio et al., “Macro- and micro-chaotic structures in the Hindmarsh–Rose model of bursting neurons”, Chaos, 24:2 (2014), 023128 | DOI | MR
[9] A. Longtin, “Autonomous stochastic resonance in bursting neurons”, Phys. Rev. E, 55:1 (1997), 868–876 | DOI
[10] S. Reinker, E. Puil, R. M. Miura, “Resonances and Noise in a Stochastic Hindmarsh–Rose Model of Thalamic Neurons”, Bull. Math. Biol., 65:4 (2003), 641–663 | DOI
[11] V. V. Osipov, E. V. Ponizovskaya, “Multivalued stochastic resonance in a model of an excitable neuron”, Phys. Lett. A, 271:3 (2000), 191–197 | DOI | MR
[12] J. Baltanas, J. Casado, “Noise-induced resonances in the Hindmarsh–Rose neuronal model”, Phys. Rev. E, 65 (2002), 041915 | DOI
[13] S. Xia, L. Qi-Shao, “Coherence resonance and synchronization of Hindmarsh–Rose neurons with noise”, Chinese Physics, 14:6 (2005), 1088–1094 | DOI
[14] H. Gu et al., “Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker”, Neuroreport, 13:13 (2002), 1657–1660 | DOI
[15] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1984 | MR | Zbl
[16] M. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett Publishers, Boston, 1995
[17] I. A. Bashkirtseva, L. B. Ryashko, “Stochastic sensitivity of 3D-cycles”, Mathematics and Computers in Simulation, 66:1 (2004), 55–67 | DOI | MR | Zbl
[18] I. Bashkirtseva, L. Ryashko, “Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique”, Phys. Rev. E, 83:6 (2011), 061109 | DOI | MR
[19] I. Bashkirtseva, L. Ryashko, “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514 | DOI | Zbl
[20] I. I. Gikhman, A. V. Skorokhod, Stochastic differential equations and its applications, Naukova dumka, Kiev, 1982 (in Russian) | MR
[21] C. W. Gardiner, Handbook Of Stochastic Methods For Physics, Chemistry, And The Natural Sciences, Springer, New York, 1983 | MR | Zbl
[22] B. Lindner, L. Schimansky-Geier, “Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276 | DOI
[23] C. Kurrer, K. Schulten, “Effect of noise and perturbations on limit cycle systems”, Phys. D, 50 (1991), 311–320 | DOI | MR | Zbl
[24] G. N. Milshtein, L. B. Ryashko, “A first approximation of the quasi-potential in problems of the stability of systems with random nondegenerate perturbations”, J. Appl. Math. Mech., 59:1 (1995), 47–56 | DOI | MR
[25] I. A. Bashkirtseva, L. B. Ryashko, “Quasipotential method in the study of local stability of limit cycles to random perturbations”, Izv. vuzov. Prikl. nelineinaya dinamika, 9:6 (2001), 104–113 (in Russian) | MR