Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh--Rose model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 79-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the effect of random disturbances on the dynamics of the three-dimensional Hindmarsh–Rose model of neuronal activity. Due to the strong nonlinearity, even the original deterministic system exhibits diverse and complex dynamic regimes (various types of periodic oscillations, oscillations zones with period doubling and adding, coexistence of several attractors, chaos). In this paper, we consider a parametric zone where a stable equilibrium is the only attractor. We show that even in this zone with simple deterministic dynamics, under the random disturbances, such complex effect as the stochastic generation of bursting oscillations can occur. For a small noise, random states concentrate near the equilibrium. With the increase of the noise intensity, random trajectories can go far from the stable equilibrium, and along with small-amplitude oscillations around the equilibrium, bursts are observed. This phenomenon is analysed using the mathematical methods based on the stochastic sensitivity function technique. An algorithm of estimation of critical values for noise intensity is proposed.
Keywords: Hindmarsh–Rose model, neurodynamics, excitability, stochastic sensitivity, stochastic generation of bursting oscillations.
@article{JSFU_2016_9_1_a8,
     author = {Lev B. Ryashko and Evdokia S. Slepukhina},
     title = {Stochastic generation of bursting oscillations in the three-dimensional {Hindmarsh--Rose} model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/}
}
TY  - JOUR
AU  - Lev B. Ryashko
AU  - Evdokia S. Slepukhina
TI  - Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh--Rose model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 79
EP  - 89
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/
LA  - en
ID  - JSFU_2016_9_1_a8
ER  - 
%0 Journal Article
%A Lev B. Ryashko
%A Evdokia S. Slepukhina
%T Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh--Rose model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 79-89
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/
%G en
%F JSFU_2016_9_1_a8
Lev B. Ryashko; Evdokia S. Slepukhina. Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh--Rose model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a8/

[1] J. L. Hindmarsh, R. M. Rose, “A model of neuronal bursting using three coupled first order differential equations”, Proc. Royal Soc. Lond., B, Biol. Sci., 221:1222 (1984), 87–102 | DOI

[2] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, 2007 | MR

[3] X.-J. Wang, “Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle”, Phys. D, 63:1–4 (1993), 263–274 | DOI | MR

[4] J. M. Gonzalez-Miranda, “Complex bifurcation Structures in the Hindmarsh–Rose Neuron Model”, Int. J. Bifurcation Chaos, 17:9 (2007), 3071–3083 | DOI | MR | Zbl

[5] G. Innocenti et al., “Dynamical phases of the Hindmarsh–Rose neuronal model: Studies of the transition from bursting to spiking chaos”, Chaos, 17 (2007), 043128 | DOI | MR | Zbl

[6] A. Shilnikov, M. Kolomiets, “Methods of the qualitative theory for the Hindmarsh–Rose Model: A case study – A Tutorial”, Int. J. Bifurcation Chaos, 18:8 (2008), 2141–2168 | DOI | MR | Zbl

[7] M. Desroches, T. Kaper, M. Krupa, “Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster”, Chaos, 23:4 (2013), 046106 | DOI | MR

[8] R. Barrio et al., “Macro- and micro-chaotic structures in the Hindmarsh–Rose model of bursting neurons”, Chaos, 24:2 (2014), 023128 | DOI | MR

[9] A. Longtin, “Autonomous stochastic resonance in bursting neurons”, Phys. Rev. E, 55:1 (1997), 868–876 | DOI

[10] S. Reinker, E. Puil, R. M. Miura, “Resonances and Noise in a Stochastic Hindmarsh–Rose Model of Thalamic Neurons”, Bull. Math. Biol., 65:4 (2003), 641–663 | DOI

[11] V. V. Osipov, E. V. Ponizovskaya, “Multivalued stochastic resonance in a model of an excitable neuron”, Phys. Lett. A, 271:3 (2000), 191–197 | DOI | MR

[12] J. Baltanas, J. Casado, “Noise-induced resonances in the Hindmarsh–Rose neuronal model”, Phys. Rev. E, 65 (2002), 041915 | DOI

[13] S. Xia, L. Qi-Shao, “Coherence resonance and synchronization of Hindmarsh–Rose neurons with noise”, Chinese Physics, 14:6 (2005), 1088–1094 | DOI

[14] H. Gu et al., “Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker”, Neuroreport, 13:13 (2002), 1657–1660 | DOI

[15] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1984 | MR | Zbl

[16] M. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett Publishers, Boston, 1995

[17] I. A. Bashkirtseva, L. B. Ryashko, “Stochastic sensitivity of 3D-cycles”, Mathematics and Computers in Simulation, 66:1 (2004), 55–67 | DOI | MR | Zbl

[18] I. Bashkirtseva, L. Ryashko, “Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique”, Phys. Rev. E, 83:6 (2011), 061109 | DOI | MR

[19] I. Bashkirtseva, L. Ryashko, “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514 | DOI | Zbl

[20] I. I. Gikhman, A. V. Skorokhod, Stochastic differential equations and its applications, Naukova dumka, Kiev, 1982 (in Russian) | MR

[21] C. W. Gardiner, Handbook Of Stochastic Methods For Physics, Chemistry, And The Natural Sciences, Springer, New York, 1983 | MR | Zbl

[22] B. Lindner, L. Schimansky-Geier, “Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276 | DOI

[23] C. Kurrer, K. Schulten, “Effect of noise and perturbations on limit cycle systems”, Phys. D, 50 (1991), 311–320 | DOI | MR | Zbl

[24] G. N. Milshtein, L. B. Ryashko, “A first approximation of the quasi-potential in problems of the stability of systems with random nondegenerate perturbations”, J. Appl. Math. Mech., 59:1 (1995), 47–56 | DOI | MR

[25] I. A. Bashkirtseva, L. B. Ryashko, “Quasipotential method in the study of local stability of limit cycles to random perturbations”, Izv. vuzov. Prikl. nelineinaya dinamika, 9:6 (2001), 104–113 (in Russian) | MR