Modeling of two-layer fluid flows with evaporation at the interface in the presence of the anomalous thermocapillary effect
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary convective flows of two immiscible viscous incompressible fluids (liquid and gas) under action of the transverse gravity field and longitudinal temperature gradient along the interface are studied analytically. Mathematical model of the fluid flows with the effects of evaporation at the interface is based on exact solutions to the Navier–Stokes equations in the Oberbeck–Boussinesq approximation. The effects of the thermodiffusion and diffusive heat conductivity in the gas-vapor layer are taken into consideration. The obtained solutions are used to model the flows in the two-layer gas-liquid system in the case when a liquid exhibits the anomalous thermocapillary effect. Examples of the two-layer fluid flows are presented for various values of the gas flow rate, longitudinal temperature gradient at the interface and the gravity force acceleration.
Keywords: mathematical model, evaporation
Mots-clés : interface, exact solution, anomalous thermocapillary effect.
@article{JSFU_2016_9_1_a5,
     author = {Olga N. Goncharova and Ekaterina V. Rezanova},
     title = {Modeling of two-layer fluid flows with evaporation at the interface in the presence of the anomalous thermocapillary effect},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a5/}
}
TY  - JOUR
AU  - Olga N. Goncharova
AU  - Ekaterina V. Rezanova
TI  - Modeling of two-layer fluid flows with evaporation at the interface in the presence of the anomalous thermocapillary effect
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 48
EP  - 59
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a5/
LA  - en
ID  - JSFU_2016_9_1_a5
ER  - 
%0 Journal Article
%A Olga N. Goncharova
%A Ekaterina V. Rezanova
%T Modeling of two-layer fluid flows with evaporation at the interface in the presence of the anomalous thermocapillary effect
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 48-59
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a5/
%G en
%F JSFU_2016_9_1_a5
Olga N. Goncharova; Ekaterina V. Rezanova. Modeling of two-layer fluid flows with evaporation at the interface in the presence of the anomalous thermocapillary effect. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 48-59. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a5/

[1] O. N. Goncharova, M. Hennenberg, E. V. Rezanova, O. A. Kabov, “Modeling of the convective fuid fows with evaporation in the two-layer systems”, Interfacial Phenomena and Heat Transfer (IHMT), 1 (2013), 389–396

[2] O. N. Goncharova, E. V. Rezanova, “Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface”, Journal of Applied Mechanics and Technical Physics, 55:2 (2014), 247–257 | DOI | MR | Zbl

[3] O. N. Goncharova, Yu. V. Lyulin, E. V. Rezanova, O. A. Kabov, “Modeling of the stationary problem of two-layer flows of the liquid and gas by evaporation”, Journal of Thermophysics and Aeromechanics, 22:5 (2015), 655–661 | DOI

[4] M. I. Shliomis, V. I. Yakushin, “Convection in a two-layers binary system with an evaporation”, Collected papers: Uchenye zapiski Permskogo Gosuniversiteta, seriya Gidrodinamika, 4 (1972), 129–140 (in Russian)

[5] R. V. Birikh, “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 3 (1969), 43–45 | DOI

[6] Yu. V. Sanochkin, “Some problems of thermocapillary fluid flows”, Prikladnaya Mechanika i Technicheskaya Fizika, 5 (1989), 83–88 (in Russian)

[7] V. V. Popov, “Mixed convection in a two-layer liquid”, Theoretical principles of chemical technology, XV:3 (1981), 398–404 (in Russian)

[8] V. K. Andreev, V. B. Bekezhanova, Stability of the non-isothermal fluids, Siberian Federal University, Krasnoyarsk, 2010 (in Russian)

[9] G. A. Ostroumov, Free convection in the conditions of the internal problem, Gos. izd-vo tehniko-teoreticheskoy literatury, M.–L., 1952 (in Russian) | MR

[10] V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachov, Mathematical models of convection, de Gruyter Studies in Mathematical Physics, De Gruyter, Berlin–Boston, 2012 | MR | Zbl

[11] B. Gebhart, Y. Jaluria, R. L. Mahajan, B. Sammakia, Bouyancy-induced flows and transport, Springer Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1988

[12] M. Cl. Limbourg-Fountaine, G. Petre, J.-C. Legros, “Texus 8 experiment: Effects of a surface tension minimum on thermocapillary convection”, Physicochemical Hydrodynamics, 6:3 (1985), 301–310

[13] J.-C. Legros, M. Cl. Limbourg-Fountaine, G. Petre, “Surface tension induced convection in presence of a surface tension minimum”, Physicochemical Hydrodynamics, Interfacial Phenomena, NATO ASI series, Series B: Physics, 174, ed. M. G. Velarde, Plenum Press, New York, 1988, 209–227 | DOI

[14] G. Petre, M. Cl. Limbourg-Fountaine, J.-C. Legros, “Study of the surface tension minimum of aqueous alcohol solutions and movements at the interface air/solution”, Proc. of the 4th Europ. Symp. on Material and Sciences under microgravity (Madrid, Spain, 5–8 April, 1983), 199–200

[15] A. Cloot, G. Lebon, “Marangoni convection induced by a nonlinear temperature-dependent surface tension”, J. Physique, 47 (1986), 23–29 | DOI

[16] R. Savino, A. Cecere, R. Di Paola, “Surface tension-driven flow in wickless heat pipes with self-rewetting fluids”, Int. J. Heat and Fluid Flow, 30:2 (2009), 380–388 | DOI

[17] O. N. Goncharova, Yu. O. Kabova, O. A. Kabov, “Thermocapillary convection in a free liquid layer in the presence of an adjacent gas flow”, Computational Thermal Sciences, 5:3 (2011), 389–396 | DOI

[18] A. A. Ravdel, A. M. Ponomareva, Hand-book of physico-chemical quantities, Specialnaya literatura, Sankt-Peterburg, 1998 (in Russian)