On limit distribution of sums of random variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Centered Rademacher sequences and centered sequences of lattice random variables with a non-trivial weak limit of the sums $ \frac{1}{\sqrt{n}}\sum\limits_{i=1}^n\xi_i$ are considered in the article. A general form of limit distribution is found for these sequences. It is shown that the form of limit distribution depends only on the average mixed moments of the first order characterizing random variables of the sequence. In the case of lattice random variables we mean a sequence of Rademacher random variables in which we can distribute the elements of the given sequence.
Keywords: sequences of random variables, sum of random variables, sum of dependent random variables
Mots-clés : limit distribution.
@article{JSFU_2016_9_1_a2,
     author = {Sergey V. Chebotarev},
     title = {On limit distribution of sums of random variables},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a2/}
}
TY  - JOUR
AU  - Sergey V. Chebotarev
TI  - On limit distribution of sums of random variables
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 17
EP  - 29
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a2/
LA  - en
ID  - JSFU_2016_9_1_a2
ER  - 
%0 Journal Article
%A Sergey V. Chebotarev
%T On limit distribution of sums of random variables
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 17-29
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a2/
%G en
%F JSFU_2016_9_1_a2
Sergey V. Chebotarev. On limit distribution of sums of random variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 17-29. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a2/

[1] Y. V. Nesterenko, Y. U. Nikitin, “Scientific conference commemorating academician Y. V. Linnik”, Vestnik of the St. Petersburg University: Mathematics, 1:4 (2005), 3–6 (in Russian) | MR

[2] I. A. Ibragimov, Y. V. Linnik, Independent and stationary sequences of random variables, Science, M., 1965 (in Russian)

[3] A. G. Grin', “Norming Sequences in the Limit Theorems for Weakly Dependent Variables”, Theory Probab. Appl., 36:2 (1992), 272–288 | DOI | MR

[4] A. G. Grin', “On Strong Attraction of Stationary Sequences to a Normal Law”, Theory Probab. Appl., 44:4 (2000), 768–775 | DOI | MR

[5] A. G. Grin', “On the Minimal Condition of Weak Dependency in the Central Limit Theorem for Stationary Sequences”, Theory Probab. Appl., 47:3 (2003), 506–510 | DOI | MR

[6] A. G. Grin', “On minimal conditions of the weak dependence in limit theorems for stationary sequences”, Theory Probab. Appl., 54:2 (2010), 307–317 | DOI | MR

[7] S. V. Chebotarev, “About sequences of random variables with averaged links”, Vestnik AltGPA, seriya: estestvenye i tochnye nauki, 7 (2011), 28–37 (in Russian)

[8] G. Szegö, Orthogonal polynomials, Fizmatgiz, M., 1962 (in Russian)

[9] S. V. Chebotarev, “About the features of Kravchuk polynomials”, Vestnik Barnaulsgogo Gos. Ped. Univ., seriya: estestvenye i tochnye nauki, 2 (2002), 53–58 (in Russian)

[10] A. N. Shiryaev, Probability, Nauka, M., 1989 (in Russian) | MR

[11] A. A. Borovkov, Probability Theory, Nauka, M., 1976 (in Russian) | MR | Zbl