On the dynamics of a class of Kolmogorov systems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 11-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form \begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( P\left( x,y\right) +\sqrt{R\left( x,y\right) }\right) , \\ y^{\prime }=y\left( Q\left( x,y\right) +\sqrt{R\left( x,y\right) }\right) , \end{array} \right. \end{equation*} where $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ homogeneous polynomials of degree $n,$ $n,$ $m,$ respectively.
Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.
@article{JSFU_2016_9_1_a1,
     author = {Rachid Boukoucha},
     title = {On the dynamics of a class of {Kolmogorov} systems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a1/}
}
TY  - JOUR
AU  - Rachid Boukoucha
TI  - On the dynamics of a class of Kolmogorov systems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 11
EP  - 16
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a1/
LA  - en
ID  - JSFU_2016_9_1_a1
ER  - 
%0 Journal Article
%A Rachid Boukoucha
%T On the dynamics of a class of Kolmogorov systems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 11-16
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a1/
%G en
%F JSFU_2016_9_1_a1
Rachid Boukoucha. On the dynamics of a class of Kolmogorov systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 11-16. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a1/

[1] A. Bendjeddou, R. Boukoucha, “Explict non-algebraic limit cycles of a class of polynomial systems”, FJAM, 91:2 (2015), 133–142 | DOI | Zbl

[2] A. Bendjeddou, R. Cheurfa, “Cubic and quartic planar differential system with exact algebraic limit cycles”, Electronic Journal of Differential Equations, 2011 | MR

[3] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the differential systems with homogenous nonlinearities and a star node”, J. Differential Equations, 254 (2013), 3530–3537 | DOI | MR | Zbl

[4] R. Boukoucha, A. Bendjeddou, “A Quintic polynomial diffential systems with explicit non-algebraic limit cycle”, Int. J. of Pure and Appl. Math., 103:2 (2015), 235–241

[5] F. H. Busse, “Transition to turbulence via the statistical limit cycle route”, Synergetics, Springer-Verlag, Berlin, 1978

[6] L. Cairó, J. Llibre, “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A, 40 (2007), 6329–6348 | DOI | MR | Zbl

[7] J. Chavarriga, I. A. Garcia, “Existence of limit cycles for real quadratic differential systems with an invariant cubic”, Pacific Journal of Mathematics, 223:2 (2006), 201–218 | DOI | MR | Zbl

[8] T. Al-Dosary Khalil, “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. Math., 18:2 (2007), 179–189 | DOI | MR | Zbl

[9] F. Dumortier, J. Llibre, J. Artes, Qualitative Theory of Planar Differential Systems, Universitext, Springer, Berlin, 2006 | MR | Zbl

[10] P. Gao, “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl

[11] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl

[12] X. Huang, “Limit in a Kolmogorov-type Moel, Internat”, J. Math. and Math. Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl

[13] G. Lavel, R. Pellat, “Plasma Physics”, Proceedings of Summer School of Theoretical Physics, Gordon and Breach, New York, 1975

[14] C. Li, J. Llibre, “The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system”, Nonlinearity, 22 (2009), 2971–2979 | DOI | MR | Zbl

[15] J. Llibre, J. Yu, X. Zhang, “On the limit cycles of the polynomial differential systems with a linear node and homogeneous nonlinearities”, International Journal of Bifurcation and Choos, 24:5 (2014), 1450065 | DOI | MR | Zbl

[16] J. Llibre, C. Valls, “Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka–Volterra systems”, Z. Angew. Math. Phys., 62 (2011), 761–777 | DOI | MR | Zbl

[17] N. G. Llyod, J. M. Pearson, “Limit cycles of a Cubic Kolmogorov System”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR

[18] R. M. May, Stability and complexity in Model Ecosystems, Princeton, New Jersey, 1974