Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_1_a1, author = {Rachid Boukoucha}, title = {On the dynamics of a class of {Kolmogorov} systems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {11--16}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a1/} }
Rachid Boukoucha. On the dynamics of a class of Kolmogorov systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 11-16. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a1/
[1] A. Bendjeddou, R. Boukoucha, “Explict non-algebraic limit cycles of a class of polynomial systems”, FJAM, 91:2 (2015), 133–142 | DOI | Zbl
[2] A. Bendjeddou, R. Cheurfa, “Cubic and quartic planar differential system with exact algebraic limit cycles”, Electronic Journal of Differential Equations, 2011 | MR
[3] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the differential systems with homogenous nonlinearities and a star node”, J. Differential Equations, 254 (2013), 3530–3537 | DOI | MR | Zbl
[4] R. Boukoucha, A. Bendjeddou, “A Quintic polynomial diffential systems with explicit non-algebraic limit cycle”, Int. J. of Pure and Appl. Math., 103:2 (2015), 235–241
[5] F. H. Busse, “Transition to turbulence via the statistical limit cycle route”, Synergetics, Springer-Verlag, Berlin, 1978
[6] L. Cairó, J. Llibre, “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A, 40 (2007), 6329–6348 | DOI | MR | Zbl
[7] J. Chavarriga, I. A. Garcia, “Existence of limit cycles for real quadratic differential systems with an invariant cubic”, Pacific Journal of Mathematics, 223:2 (2006), 201–218 | DOI | MR | Zbl
[8] T. Al-Dosary Khalil, “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. Math., 18:2 (2007), 179–189 | DOI | MR | Zbl
[9] F. Dumortier, J. Llibre, J. Artes, Qualitative Theory of Planar Differential Systems, Universitext, Springer, Berlin, 2006 | MR | Zbl
[10] P. Gao, “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl
[11] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl
[12] X. Huang, “Limit in a Kolmogorov-type Moel, Internat”, J. Math. and Math. Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl
[13] G. Lavel, R. Pellat, “Plasma Physics”, Proceedings of Summer School of Theoretical Physics, Gordon and Breach, New York, 1975
[14] C. Li, J. Llibre, “The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system”, Nonlinearity, 22 (2009), 2971–2979 | DOI | MR | Zbl
[15] J. Llibre, J. Yu, X. Zhang, “On the limit cycles of the polynomial differential systems with a linear node and homogeneous nonlinearities”, International Journal of Bifurcation and Choos, 24:5 (2014), 1450065 | DOI | MR | Zbl
[16] J. Llibre, C. Valls, “Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka–Volterra systems”, Z. Angew. Math. Phys., 62 (2011), 761–777 | DOI | MR | Zbl
[17] N. G. Llyod, J. M. Pearson, “Limit cycles of a Cubic Kolmogorov System”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR
[18] R. M. May, Stability and complexity in Model Ecosystems, Princeton, New Jersey, 1974