An efficient water model for large scale molecular dynamics simulations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 487-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

The development of simple and efficient model that correctly represent the important features of water is essential to overcome the limitations in time scale and system size currently encountered in atomistic molecular dynamics simulations. The proposed one site model includes Lennard-Jones interaction and the angular averaged dipole-dipole interaction. Experimental data of liquid water at various temperatures are used for parametrization of the model. The values of density were chosen as primary target properties. These properties cover a temperature range from 300 to 350 K and pressures up to 10.1 MPa. The model properties are compared with those obtained from experiment and from general purpose TIP4P/2005 model. The comparison shows that all chosen properties are quite well reproduced by the proposed model. Computational scheme that is used in simulations is also presented. The proposed water model reproduces the key characteristics of liquid water while being computationally considerably more efficient than standard multi-site atomistic water models. The model is for use on large scale simulations of the fluid behavior in nanosized structures.
Keywords: water model, molecular dynamics simulation.
@article{JSFU_2015_8_4_a11,
     author = {Viktor E. Zalizniak},
     title = {An efficient water model for large scale molecular dynamics simulations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {487--496},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a11/}
}
TY  - JOUR
AU  - Viktor E. Zalizniak
TI  - An efficient water model for large scale molecular dynamics simulations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 487
EP  - 496
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a11/
LA  - en
ID  - JSFU_2015_8_4_a11
ER  - 
%0 Journal Article
%A Viktor E. Zalizniak
%T An efficient water model for large scale molecular dynamics simulations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 487-496
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a11/
%G en
%F JSFU_2015_8_4_a11
Viktor E. Zalizniak. An efficient water model for large scale molecular dynamics simulations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 487-496. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a11/

[1] B. Guillot, “A reappraisal of what we have learnt during three decades of computer simulations on water”, J. Mol. Liq., 101 (2002), 219–260 | DOI

[2] J. L. Finney, “The water molecule and its interactions: the interaction between theory, modelling, and experiment”, J. Mol. Liq., 90 (2001), 303–312 | DOI

[3] M. Chaplin, Water structure and science, http://www.lsbu.ac.uk/water

[4] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, “The missing term in effective pair potentials”, J. Phys. Chem., 91 (1987), 6269–6271 | DOI

[5] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79 (1983), 926–935 | DOI

[6] S. Izadi, R. Anandakrishnan, A. V. Onufriev, “Building water models: A different approach”, J. Phys. Chem. Lett., 5 (2014), 3863–3871 | DOI

[7] J. L. F. Abascal, C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005”, J. Chem. Phys., 123 (2005), 234505 | DOI

[8] F. H. Stillinger, A. Rahman, “Improved simulation of liquid water by molecular dynamics”, J. Chem. Phys., 60 (1974), 1545–1557 | DOI

[9] M. W. Mahoney, W. L. Jorgensen, “A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions”, J. Chem. Phys., 112 (2000), 8910–8922 | DOI

[10] S. Riniker, W. F. van Gunsteren, “A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations”, J. Chem. Phys., 134 (2011), 084110 | DOI

[11] D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca Raton, FL, 1994

[12] K. J. Miller, “Additivity methods in molecular polarizability”, J. Am. Chem. Soc., 112 (1990), 8533 | DOI

[13] D. P. Shelton, “Slow polarization relaxation in water observed by hyper-Rayleigh scattering”, Phys. Rev. B, 72 (2005), 020201(R) | DOI

[14] O. A. Zolotov, V. E. Zalizniak, “Accurate energy conservation in molecular dynamics simulation”, Nanosystems: Physics, Chemistry, Mathematics, 4 (2013), 657–669

[15] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/

[16] M. W. Mahoney, W. L. Jorgensen, “A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions”, J. Chem. Phys., 112 (2000), 8910–8922 | DOI

[17] A. P. Kunz, W. F. van Gunsteren, “Development of a Nonlinear Classical Polarization Model for Liquid Water and Aqueous Solutions: COS/D”, J. Phys. Chem. A, 113 (2009), 11570 | DOI

[18] M. Kinoshita, “Roles of translational motion of water molecules in sustaining life”, Fronteirs Biosci, 14 (2009), 3419–3454 | DOI

[19] D. Enskog, Der warmeleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flussigkeiten, Kungliga Svenska Vetenskapsakademiens Handlingar, 63, 1922 | Zbl

[20] I. E. Irodov, Physics of Macro-systems. The Fundamental Laws, 4th ed., BKL Publishers, M., 2010

[21] N. F. Carnahan, K. E. Starling, “Equation of state for nonattracting rigid spheres”, J. Chem. Phys., 51 (1969), 635–636 | DOI

[22] V. Petkov, Y. Ren, M. Suchomel, “Molecular arrangement in water: random but not quite”, J. Phys.: Condens. Matter, 24 (2012), 155102 | DOI

[23] M. M. Simunin, S. V. Hartov, A. V. Shiverskiy, V. Ya. Zyryanov, Iu. V. Fadeev, A. S. Voronin, “Structures on the basis of graphitic nanotubulenes a common electrode in a matrix of porous anodic aluminum oxide for the task of forming switchable electric field membrane”, Pisma v Zhurnal Tehnchieskoy Fiziki, 41 (2015), 52–59 (in Russian)