Privacy-preserving building of self-organizing maps
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 478-486.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various data mining techniques are designed for extracting significant and valuable patterns from huge databases. Today databases are often divided between several organizations for the reason of limitations like geographical remoteness, but the most important limit is preserving privacy, unwillingness of data disclosing. Every party involved in analysis wants to keep its own information private because of legal regulations and reasons of know-how. Secure multiparty computations are designed for data mining execution in a multiparty environment, where it is extremely important to maintain the privacy of the input (and possibly output) data. A self-organizing map is the data mining method by which analytics can display patterns on two-dimensional intuitive maps and recognize data clusters. This article presents protocols for preserving privacy in the process of building self-organizing maps. The protocols allow the implementation of a self-organizing map algorithm for two parties with horizontally partitioned data and for several parties with vertically partitioned data.
Keywords: secure multiparty computations, secure dot product, cluster analysis, self-organizing map.
@article{JSFU_2015_8_4_a10,
     author = {Alexey V. Vashkevich and Vadim G. Zhukov and Eugene S. Semenkin},
     title = {Privacy-preserving building of self-organizing maps},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {478--486},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a10/}
}
TY  - JOUR
AU  - Alexey V. Vashkevich
AU  - Vadim G. Zhukov
AU  - Eugene S. Semenkin
TI  - Privacy-preserving building of self-organizing maps
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 478
EP  - 486
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a10/
LA  - en
ID  - JSFU_2015_8_4_a10
ER  - 
%0 Journal Article
%A Alexey V. Vashkevich
%A Vadim G. Zhukov
%A Eugene S. Semenkin
%T Privacy-preserving building of self-organizing maps
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 478-486
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a10/
%G en
%F JSFU_2015_8_4_a10
Alexey V. Vashkevich; Vadim G. Zhukov; Eugene S. Semenkin. Privacy-preserving building of self-organizing maps. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 478-486. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a10/

[1] A. K. Jain, “Data clustering: 50 years beyond K-means”, Pattern Recognition Letters, 31 (2010), 651–666 | DOI

[2] S. Han, W. K. Ng, “Privacy-Preserving Self-Organizing Map”, Data Warehousing and Knowledge Discovery, Proceedings of the International Conference DaWaK, v. 8, Lecture Notes in Computer Science, 4654, 2007, 428–437 | DOI

[3] A. C. Yao, “Protocols for Secure Computations”, Proc. of the Symposium on FOCS, 23 (1982), 160–164 | MR

[4] Y. Lindell, B. Pinkas, “Privacy preserving data mining”, Advances in Cryptology, Lecture Notes in Computer Science, 1880, 2000, 36–54 | MR | Zbl

[5] M. Kantarcioglu, J. Vaidya, “Privacy preserving naive bayes classifier for horizontally partitioned data”, IEEE ICDM Workshop on Privacy Preserving Data Mining (2003), 3–9

[6] M. Kantarcioglu, C. Clifton, “Preserving data mining of association rules on horizontally partitioned data”, IEEE Transactions on Knowledge and Data Engineering, 16:9 (2004), 1026–1037 | DOI

[7] B. Goethals, S. Laur, H. Lipmaa, T. Mielikainen, “On private scalar product computation for privacy-preserving data mining”, Information Security and Cryptology — ICISC 2004, Proceedings of the Annual International Conference ICISC, v. 7, Lecture Notes in Computer Science, 3506, 2004, 104–120 | DOI | MR

[8] R. Vidyabanu, N. Nagaveni, “A Model Based Framework for Privacy Preserving Clustering Using SOM”, International Journal of Computer Applications, 1:13 (2010), 17–21 | DOI

[9] F. Meskine, S. N. Bahloul, “Privacy preserving k-means clustering: a survey research”, International Arab Journal of Information Technology, 9:2 (2012), 194–200

[10] J. Vaidya, C. Clifton, “Privacy-preserving k-means clustering over vertically partitioned data”, Proc. of the ACM SIGKDD international conference on Knowledge discovery and data mining, v. 9, 2003, 206–215

[11] M. Doganay, T. Pedersen, Y. Saygin, E. Savas, A. Levi, “Distributed Privacy Preserving Clustering with Additive Secret Sharing”, Proceedings of the International Workshop on PAIS (2008), 6003–6011

[12] M. Upmanyu, A. M. Namboodiri, K. Srinathan, C. V. Jawahar, “Efficient privacy preserving k-means clustering”, Intelligence and Security Informatics, 6122 (2010), 154–166 | DOI

[13] N. B. Jinwala, G. B. Jethava, “Privacy Preserving Using Distributed K-means Clustering for Arbitrarily Partitioned Data”, International Journal of Engineering Development and Research, 2:2 (2014), 2291–2295

[14] S. Samet, A. Miri, L. Orozco-Barbosa, “Privacy Preserving k-Means Clustering in Multi-Party A. Environment”, Proceedings of the International Conference SECRYPT (2007), 381–385

[15] B. Malek, A. Miri, “Secure dot-product protocol using trace functions”, Proceedings of the IEEE ISIT (2006), 927–931

[16] V. G. Zhukov, A. V. Vashkevich, “Modified secure dot product in privacy-preserving clustering k-means with vertically partitioned data”, Vestnik SibGAU, 50:4 (2013), 18–22 (in Russian)

[17] T. Kohonen, “Self-Organized Formation of Topologically Correct Feature Maps”, Biological Cybernetics, 43:1 (1982), 59–69 | DOI | MR | Zbl