Coordinate and time-frequency support of a spacecraft flight by means of autonomic navigation using sigma-point Kalman filter algorithm
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 385-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are investigated errors of a spacecraft current coordinate and velocity estimates, time-frequency scale bias of the board receiver reference oscillator. The receiver is a component of the autonomic navigation system using signals of global navigation systems GLONASS or GPS. Estimates are formed by the navigation calculator on the bases of pseudo range and pseudo velocity measurements taken in the regime of navigation signals delay and Doppler frequencies tracking under the condition of the receiver noise. The calculator utilizes sigma-point Kalman filter. Analysis of estimations accuracy is done by the Monte-Carlo method while spacecraft moves along a high elliptic orbit.
Keywords: autonomic navigation system, spacecraft, coordinate estimation, on board time scale bias, sigma-point Kalman filter, statistic simulation.
@article{JSFU_2015_8_4_a1,
     author = {Vladimir A. Filimonov and Vyacheslav V. Shavrin and Vladimir I. Tislenko and Alexey P. Kravets and Vitaliy Yu. Lebedev and Vadim N. Shkolniy},
     title = {Coordinate and time-frequency support of a spacecraft flight by means of autonomic navigation using sigma-point {Kalman} filter algorithm},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {385--393},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a1/}
}
TY  - JOUR
AU  - Vladimir A. Filimonov
AU  - Vyacheslav V. Shavrin
AU  - Vladimir I. Tislenko
AU  - Alexey P. Kravets
AU  - Vitaliy Yu. Lebedev
AU  - Vadim N. Shkolniy
TI  - Coordinate and time-frequency support of a spacecraft flight by means of autonomic navigation using sigma-point Kalman filter algorithm
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 385
EP  - 393
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a1/
LA  - en
ID  - JSFU_2015_8_4_a1
ER  - 
%0 Journal Article
%A Vladimir A. Filimonov
%A Vyacheslav V. Shavrin
%A Vladimir I. Tislenko
%A Alexey P. Kravets
%A Vitaliy Yu. Lebedev
%A Vadim N. Shkolniy
%T Coordinate and time-frequency support of a spacecraft flight by means of autonomic navigation using sigma-point Kalman filter algorithm
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 385-393
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a1/
%G en
%F JSFU_2015_8_4_a1
Vladimir A. Filimonov; Vyacheslav V. Shavrin; Vladimir I. Tislenko; Alexey P. Kravets; Vitaliy Yu. Lebedev; Vadim N. Shkolniy. Coordinate and time-frequency support of a spacecraft flight by means of autonomic navigation using sigma-point Kalman filter algorithm. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 385-393. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a1/

[1] N. V. Michaylov, Autonomous navigation of space crafts using GNSS, Politechnika, St. Peterburg, 2014 (in Russian)

[2] M. C. Moreau, GPS receiver architecture for autonomous navigation in high Earth orbits, PhD thesis, University of Colorado, USA, 2001

[3] A. Perov, V. Kharisov (eds.), GLONASS. Principles of designing and functioning, Radiotechnika, M., 2010 (in Russian)

[4] M. Simandl, Lecture notes on state estimation of nonlinear non-Gaussian stochastic systems, Univ. of West Bohemia, Pilsen, 2006

[5] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking”, IEEE Trans. on Signal Processing, 50:2 (2002), 174–178 | DOI

[6] V. I. Tikhonov, V. N. Kharisov, Statistical analysis and synthesis of radio engineering devices and systems, Radio i svyaz, M., 1991 (in Russian)

[7] A. P. Sage, J. L. Melse, Estimation theory with application to communication and control, McGraw-Hill, N.-Y., 1972

[8] J. S. Meditch, Stochastic Optimal Linear Estimation and Control, McGraw-Hill, N.-Y., 1969 | Zbl

[9] V. P. Loginov, “Approximate algorithms of non-linear filtering”, Zarubezhnaya radioelektronika, 1:2 (1975), 28–48 (in Russian)

[10] V. P. Loginov, N. P. Ustinov, “Approximate algorithms of non-linear filtering”, Zarubezhnaya radioelektronika, 2:3 (1964), 3–28 (in Russian) | MR

[11] S. J. Julier, J. K. Uhlmann, “A New Approach for Filtering Nonlinear Systems”, Proc. of Aero Science, The 11th Int. Symp. on Aerospace Defence Sensing, Simulation and Controls (1997)

[12] S. J. Julier, “The Scaled Unscented Transformation”, Proc. of the American Control Conference, American Automatic Control Council, 2002, 1108–1114

[13] R. Van Der Merwe, E. Wan, “Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models”, Proc. of the Workshop on Advances in Machine Learning, N.-Y., 2003

[14] F. Graas, S. Craig, W. Pelgrum, S. Ugazio, “Laboratory and Flight Test Analysis of Rubidium Frequency Reference Performance”, Navigation, 60:2 (2013), 123–131 | DOI

[15] R. G. Brown, P. Y. Hwang, Introduction to Random Signals and Applied Kalman Filtering, Wiley, 1992 | Zbl