Finite representation of classes of isomorphic groupoids
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 312-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an alternative representation of finite groupoids in the form of hypergraphs with three-vertex edges. Automorphism classes of vertices and edges of this hypergraphs are linearly ordered by a natural indexing algorithm based on a maxi-code for three-dimensional adjacency matrix of the hypergraph. With respect of this indexing is constructed a finite set description for the classes of isomorphic groupoids.
Keywords: hypergraphs
Mots-clés : finite groupoids, automorphism classes of groupoid elements.
@article{JSFU_2015_8_3_a6,
     author = {Maxim N. Nazarov},
     title = {Finite representation of classes of isomorphic groupoids},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {312--319},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a6/}
}
TY  - JOUR
AU  - Maxim N. Nazarov
TI  - Finite representation of classes of isomorphic groupoids
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 312
EP  - 319
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a6/
LA  - en
ID  - JSFU_2015_8_3_a6
ER  - 
%0 Journal Article
%A Maxim N. Nazarov
%T Finite representation of classes of isomorphic groupoids
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 312-319
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a6/
%G en
%F JSFU_2015_8_3_a6
Maxim N. Nazarov. Finite representation of classes of isomorphic groupoids. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 312-319. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a6/

[1] M. N. Nazarov, “A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology”, J. Math. Sci., 206:5 (2015), 561–569 | Zbl

[2] M. N. Nazarov, “Alternative approaches to the description of classes of isomorphic graphs”, Prikl. Diskr. Mat., 3 (2014), 86–97 (in Russian)

[3] A. A. Zykov, “Hypergraphs”, Russian Mathematical Surveys, 29:6 (1974), 89–154 | MR | Zbl

[4] D. Weininger et al., “SMILES. 2: Algorithm for generation of unique SMILES notation”, J. Chem. Inf. Comput. Sci., 29:2 (1989), 97–101

[5] M. A. Harrison, “The number of isomorphism types of finite algebras”, Proc. Amer. Math. Soc., 17 (1966), 731–737 | MR | Zbl