Finite representation of classes of isomorphic groupoids
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 312-319
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an alternative representation of finite groupoids in the form of hypergraphs with three-vertex edges. Automorphism classes of vertices and edges of this hypergraphs are linearly ordered by a natural indexing algorithm based on a maxi-code for three-dimensional adjacency matrix of the hypergraph. With respect of this indexing is constructed a finite set description for the classes of isomorphic groupoids.
Keywords:
hypergraphs
Mots-clés : finite groupoids, automorphism classes of groupoid elements.
Mots-clés : finite groupoids, automorphism classes of groupoid elements.
@article{JSFU_2015_8_3_a6,
author = {Maxim N. Nazarov},
title = {Finite representation of classes of isomorphic groupoids},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {312--319},
year = {2015},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a6/}
}
Maxim N. Nazarov. Finite representation of classes of isomorphic groupoids. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 312-319. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a6/
[1] M. N. Nazarov, “A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology”, J. Math. Sci., 206:5 (2015), 561–569 | Zbl
[2] M. N. Nazarov, “Alternative approaches to the description of classes of isomorphic graphs”, Prikl. Diskr. Mat., 3 (2014), 86–97 (in Russian)
[3] A. A. Zykov, “Hypergraphs”, Russian Mathematical Surveys, 29:6 (1974), 89–154 | MR | Zbl
[4] D. Weininger et al., “SMILES. 2: Algorithm for generation of unique SMILES notation”, J. Chem. Inf. Comput. Sci., 29:2 (1989), 97–101
[5] M. A. Harrison, “The number of isomorphism types of finite algebras”, Proc. Amer. Math. Soc., 17 (1966), 731–737 | MR | Zbl