Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_3_a3, author = {Kirill V. Korshun}, title = {On some inverse problem for a parabolic equation with a parameter}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {281--290}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a3/} }
TY - JOUR AU - Kirill V. Korshun TI - On some inverse problem for a parabolic equation with a parameter JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 281 EP - 290 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a3/ LA - en ID - JSFU_2015_8_3_a3 ER -
Kirill V. Korshun. On some inverse problem for a parabolic equation with a parameter. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 281-290. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a3/
[1] Yu. Ya. Belov, Inverse problems for partial differential equations, VSP, Utrecht etc., 2002 | MR | Zbl
[2] Yu. Ya. Belov, “A linear stationary problem of ocean dynamics”, Math. Notes, 26:1 (1979), 513–517 | MR
[3] Yu. Ya. Belov, “Splitting in a degenerate quasilinear parabolic equation”, Math. Notes, 46:6 (1989), 906–909 | MR | Zbl
[4] S. S. Akhtamova, “On some inverse problems for parabolic equations”, Doklady AN SSSR, 316:4 (1991), 791–795 (in Russian) | MR | Zbl
[5] Yu. Ya. Belov, “On some inverse problem for semilinear parabolic equation”, Doklady AN SSSR, 316:5 (1991), 1034–1038 (in Russian) | MR | Zbl
[6] Yu. Ya. Belov, K. V. Korshun, “An Identification Problem of Source Function in the Burgers-type Equation”, Journal of Siberian Federal Universtity. Mathematics Physics, 5:4 (2012), 497–506 (in Russian)
[7] Yu. Ya. Belov, K. V. Korshun, “On some inverse problem for the Burgers-type Equation”, Sibirskiy Zhurnal Industrailnoy Matematiki, 16:3 (2013), 28–40 (in Russian) | MR | Zbl
[8] Yu. Ya. Belov, “On some linear partial differential systems with small parameter”, Dokl. Akad. Nauk SSSR, 231:5 (1976), 1037–1040 (in Russian) | MR | Zbl
[9] A. P. Oskolkov, “On some quasilinear parabolic system with small parameter approximating Navier–Stokes equation system”, Zapiski nauchnykh seminarov LOMI AN SSSR, 32, 1971, 78–103 (in Russian)
[10] N. N. Yanenko, “On the weak approximation of the differential equations systems”, Siberian Mat. Zh., 5:6 (1964), 1431–1434 (in Russian) | MR | Zbl
[11] N. N. Yanenko, G. V. Demidov, “The research of a Cauchy problem by method of weak approximation”, Dokl. Akad. Nauk SSSR, 6 (1966), 1242–1244 (in Russian)
[12] Yu. Ya. Belov, S. A. Cantor, Weak approximation method, Krasnoyarsky gos. univ., Krasnoyarsk, 1999 (in Russian)
[13] A. D. Polyanin, Reference book to linear equations of mathematical physics, Nauka, M., 2001 (in Russian)