On some inverse problem for a parabolic equation with a parameter
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 281-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse boundary-value problem for $n$-dimensional parabolic equation with a parameter is considered. Sufficient conditions for existence and uniqueness of solution in continuously differentiable class are obtained.
Keywords: differential equation, boundary-value problem, method of weak approximation.
@article{JSFU_2015_8_3_a3,
     author = {Kirill V. Korshun},
     title = {On some inverse problem for a parabolic equation with a parameter},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {281--290},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a3/}
}
TY  - JOUR
AU  - Kirill V. Korshun
TI  - On some inverse problem for a parabolic equation with a parameter
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 281
EP  - 290
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a3/
LA  - en
ID  - JSFU_2015_8_3_a3
ER  - 
%0 Journal Article
%A Kirill V. Korshun
%T On some inverse problem for a parabolic equation with a parameter
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 281-290
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a3/
%G en
%F JSFU_2015_8_3_a3
Kirill V. Korshun. On some inverse problem for a parabolic equation with a parameter. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 281-290. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a3/

[1] Yu. Ya. Belov, Inverse problems for partial differential equations, VSP, Utrecht etc., 2002 | MR | Zbl

[2] Yu. Ya. Belov, “A linear stationary problem of ocean dynamics”, Math. Notes, 26:1 (1979), 513–517 | MR

[3] Yu. Ya. Belov, “Splitting in a degenerate quasilinear parabolic equation”, Math. Notes, 46:6 (1989), 906–909 | MR | Zbl

[4] S. S. Akhtamova, “On some inverse problems for parabolic equations”, Doklady AN SSSR, 316:4 (1991), 791–795 (in Russian) | MR | Zbl

[5] Yu. Ya. Belov, “On some inverse problem for semilinear parabolic equation”, Doklady AN SSSR, 316:5 (1991), 1034–1038 (in Russian) | MR | Zbl

[6] Yu. Ya. Belov, K. V. Korshun, “An Identification Problem of Source Function in the Burgers-type Equation”, Journal of Siberian Federal Universtity. Mathematics Physics, 5:4 (2012), 497–506 (in Russian)

[7] Yu. Ya. Belov, K. V. Korshun, “On some inverse problem for the Burgers-type Equation”, Sibirskiy Zhurnal Industrailnoy Matematiki, 16:3 (2013), 28–40 (in Russian) | MR | Zbl

[8] Yu. Ya. Belov, “On some linear partial differential systems with small parameter”, Dokl. Akad. Nauk SSSR, 231:5 (1976), 1037–1040 (in Russian) | MR | Zbl

[9] A. P. Oskolkov, “On some quasilinear parabolic system with small parameter approximating Navier–Stokes equation system”, Zapiski nauchnykh seminarov LOMI AN SSSR, 32, 1971, 78–103 (in Russian)

[10] N. N. Yanenko, “On the weak approximation of the differential equations systems”, Siberian Mat. Zh., 5:6 (1964), 1431–1434 (in Russian) | MR | Zbl

[11] N. N. Yanenko, G. V. Demidov, “The research of a Cauchy problem by method of weak approximation”, Dokl. Akad. Nauk SSSR, 6 (1966), 1242–1244 (in Russian)

[12] Yu. Ya. Belov, S. A. Cantor, Weak approximation method, Krasnoyarsky gos. univ., Krasnoyarsk, 1999 (in Russian)

[13] A. D. Polyanin, Reference book to linear equations of mathematical physics, Nauka, M., 2001 (in Russian)