The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 165-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider fertile Hard-Core (HC) models with activity parameter $\lambda>0$ and four states on the Cayley tree of order two. It is known that there are three types of such models. In this paper for each of these models the uniqueness of the translation-invariant Gibbs measure is proved.
Keywords: Cayley tree, HC-model, Gibbs measure, translation-invariant measures.
Mots-clés : configuration
@article{JSFU_2015_8_2_a5,
     author = {Rustam M. Khakimov},
     title = {The uniqueness of the translation-invariant {Gibbs} measure for four state {HC-models} on a {Cayley} tree},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {165--172},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/}
}
TY  - JOUR
AU  - Rustam M. Khakimov
TI  - The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 165
EP  - 172
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/
LA  - en
ID  - JSFU_2015_8_2_a5
ER  - 
%0 Journal Article
%A Rustam M. Khakimov
%T The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 165-172
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/
%G en
%F JSFU_2015_8_2_a5
Rustam M. Khakimov. The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/

[1] D. Galvin, J. Kahn, “On phase transition in the hard-core model on $Z^d$”, Combinatorics, Probability and Computing, 13 (2004), 137–164 | DOI | MR | Zbl

[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic, London, 1982 | MR | Zbl

[3] F. Kelly, “Loss networks”, Ann. Appl. Probab., 1:3 (1991), 319–378 | DOI | MR | Zbl

[4] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64 (1991), 111–134 | DOI | MR | Zbl

[5] H.-O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR

[6] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[7] Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results, International Series in Natural Philosophy, 108, Pergamon Press, Oxford–Elmsford, N.Y., 1982 | MR

[8] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1/2 (2004), 197–212 | DOI | MR | Zbl

[9] R. M. Khakimov, “Uniqueness of Weakly Periodic Gibbs Measure for HC-models”, Math. Notes, 94:5 (2013), 139–143 | MR

[10] J. B. Martin, U. A. Rozikov, Y. M. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlin. Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[11] U. A. Rozikov, Sh. A. Shoyusupov, “Fertile three state HC models on Cayley tree”, Theor. Math. Phys., 156:3 (2008), 1319–1330 | DOI | MR | Zbl

[12] G. R. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR | Zbl

[13] R. M. Khakimov, “Translation-invariant Gibbs measures for fertile HC-models with three state on a Cayley tree”, Theor. Math. Phys. | DOI

[14] U. A. Rozikov, Gibbs measures on Cayley trees, World Scientific, 2013 | MR | Zbl