Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_2_a5, author = {Rustam M. Khakimov}, title = {The uniqueness of the translation-invariant {Gibbs} measure for four state {HC-models} on a {Cayley} tree}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {165--172}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/} }
TY - JOUR AU - Rustam M. Khakimov TI - The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 165 EP - 172 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/ LA - en ID - JSFU_2015_8_2_a5 ER -
%0 Journal Article %A Rustam M. Khakimov %T The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 165-172 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/ %G en %F JSFU_2015_8_2_a5
Rustam M. Khakimov. The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a5/
[1] D. Galvin, J. Kahn, “On phase transition in the hard-core model on $Z^d$”, Combinatorics, Probability and Computing, 13 (2004), 137–164 | DOI | MR | Zbl
[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic, London, 1982 | MR | Zbl
[3] F. Kelly, “Loss networks”, Ann. Appl. Probab., 1:3 (1991), 319–378 | DOI | MR | Zbl
[4] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64 (1991), 111–134 | DOI | MR | Zbl
[5] H.-O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR
[6] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl
[7] Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results, International Series in Natural Philosophy, 108, Pergamon Press, Oxford–Elmsford, N.Y., 1982 | MR
[8] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1/2 (2004), 197–212 | DOI | MR | Zbl
[9] R. M. Khakimov, “Uniqueness of Weakly Periodic Gibbs Measure for HC-models”, Math. Notes, 94:5 (2013), 139–143 | MR
[10] J. B. Martin, U. A. Rozikov, Y. M. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlin. Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl
[11] U. A. Rozikov, Sh. A. Shoyusupov, “Fertile three state HC models on Cayley tree”, Theor. Math. Phys., 156:3 (2008), 1319–1330 | DOI | MR | Zbl
[12] G. R. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR | Zbl
[13] R. M. Khakimov, “Translation-invariant Gibbs measures for fertile HC-models with three state on a Cayley tree”, Theor. Math. Phys. | DOI
[14] U. A. Rozikov, Gibbs measures on Cayley trees, World Scientific, 2013 | MR | Zbl