Detection of regularity violations of cyclic processes in a temperature monitoring system using patterns form
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 157-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

Periodicity mining is used for predicting trends in time series data. Discovering the rate at which the time series is periodic has always been an obstacle for fully automated periodicity mining. In this paper, a method for detecting the weather temperature series periodicity is proposed. The proposed method, based on DFT, effectively discovered the series periodicity and determined the periodic patterns and their repetition frequencies. Then, the series has been divided into equal time slots based on the pattern repetition frequency. A reference series has been constructed as repetitions for a template pattern, which was constructed from the patterns averages of the original temperature series. The reference series is very useful in temperature series analysis, as the patterns deviations, the future patterns predictions, and the anomalies detections. Experimental results show that the proposed method accurately discovers periodicity rates and periodic patterns.
Keywords: patterns, cyclic, periodicity, air temperature, Z-scores, DFT.
@article{JSFU_2015_8_2_a4,
     author = {Hussein Sh. Hussein and Alexey G. Yakunin},
     title = {Detection of regularity violations of cyclic processes in a temperature monitoring system using patterns form},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a4/}
}
TY  - JOUR
AU  - Hussein Sh. Hussein
AU  - Alexey G. Yakunin
TI  - Detection of regularity violations of cyclic processes in a temperature monitoring system using patterns form
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 157
EP  - 164
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a4/
LA  - en
ID  - JSFU_2015_8_2_a4
ER  - 
%0 Journal Article
%A Hussein Sh. Hussein
%A Alexey G. Yakunin
%T Detection of regularity violations of cyclic processes in a temperature monitoring system using patterns form
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 157-164
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a4/
%G en
%F JSFU_2015_8_2_a4
Hussein Sh. Hussein; Alexey G. Yakunin. Detection of regularity violations of cyclic processes in a temperature monitoring system using patterns form. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a4/

[1] S. Makridakis, “Time series prediction: Forecasting the future and understanding the past”, International Journal of Forecasting, 1994, no. 10, 463–466 | DOI

[2] C. Bettini, X. S. Wang, S. Jajodia, J. L. Lin, “Discovering frequent event patterns with multiple granularities in time sequences”, IEEE Trans. Knowl. Data Eng., 10 (1998), 222–237 | DOI

[3] R. Agrawal, R. Srikant, “Mining sequential patterns”, Proc. Elev. Int. Conf. Data Eng. (1995), 3–14

[4] J. Han, J. Pei, Y. Yin, R. Mao, “Mining sequential patterns by pattern-growth: The prefixspan approach”, IEEE Trans. Knowl. Data Eng., 16 (2004), 1424–1440 | DOI

[5] C. Ranssi, T. Calders, P. Poncelet, “Mining conjunctive sequential patterns”, Data Mining and Knowledge Discovery, 17 (2008), 77–93 | DOI | MR

[6] J. Yin, Z. Zheng, L. Cao, “USpan: An efficient algorithm for mining high utility sequential patterns”, 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2012), 660–668

[7] T. P. Exarchos, C. Papaloukas, C. Lampros, D. I. Fotiadis, “Mining sequential patterns for protein fold recognition”, J. Biomed. Inform., 41 (2008), 165–179 | DOI

[8] S. M. S. Ma, J. L. Hellerstein, “Mining partially periodic event patterns with unknown periods”, Proc. 17th Int. Conf. Data Eng. (2001)

[9] J. Yang, W. Wang, P. S. Yu, “Mining asynchronous periodic patterns in time series data”, IEEE Trans. Knowl. Data Eng., 15 (2003), 613–628 | DOI

[10] D. Chudova, A. Ihler, K. K. Lin, B. Andersen, P. Smyth, “Bayesian detection of non-sinusoidal periodic patterns in circadian expression data”, Bioinformatics, 25 (2009), 3114–3120 | DOI

[11] J. Assfalg et al., “Periodic Pattern Analysis in Time Series Databases”, Proceedings of the 14th International Conference on Database Systems for Advanced Applications (2009), 354–368

[12] F. Rasheed, M. Alshalalfa, R. Alhajj, “Efficient periodicity mining in time series databases using suffix trees”, IEEE Trans. Knowl. Data Eng., 23 (2011), 79–94 | DOI

[13] C. Casty et al., “Temperature and precipitation variability in the European Alps since 1500”, Int. J. Climatol., 25 (2005), 1855–1880 | DOI

[14] M. Brandt et al., “Environmental change in time series — An interdisciplinary study in the Sahel of Mali and Senegal”, J. Arid Environ., 105 (2014), 52–63 | DOI

[15] A. Astel, J. Mazerski, Z. Polkowska, J. Namiesnik, “Application of PCA and time series analysis in studies of precipitation in Tricity (Poland)”, Adv. Environ. Res., 8 (2004), 337–349 | DOI

[16] R. E. Shiffler, “Maximum Z Scores and Outliers”, Am. Stat., 42 (1988), 79–80 | MR

[17] R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973 | Zbl

[18] J. C. Yoo, T. H. Han, “Fast normalized cross-correlation”, Circuits, Syst. Signal Process., 28 (2009), 819–843 | DOI | MR | Zbl

[19] D. M. Tsai, C. T. Lin, “Fast normalized cross correlation for defect detection”, Pattern Recognit. Lett., 24 (2003), 2625–2631 | DOI