Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_2_a2, author = {Victor K. Andreev}, title = {Unsteady {2D} motions a viscous fluid described by partially invariant solutions to the {Navier--Stokes} equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {140--147}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/} }
TY - JOUR AU - Victor K. Andreev TI - Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier--Stokes equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 140 EP - 147 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/ LA - en ID - JSFU_2015_8_2_a2 ER -
%0 Journal Article %A Victor K. Andreev %T Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier--Stokes equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 140-147 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/ %G en %F JSFU_2015_8_2_a2
Victor K. Andreev. Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier--Stokes equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 140-147. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/
[1] V. O. Bytev, “Group-theoretic properties of the Navier–Stokes equations”, Chislennye metody sploshnoi mehaniki, 3:3 (1972), 13–17 (in Russian) | MR
[2] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, A. A. Rodionov, Application of Group-Theoretical Methods in Hydrodynamics, Kluwer Acad. Publ., Dordrecht–Boston–London, 2010
[3] V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachev, Mathematical Models of Convection, Walter de Gruyter GmbH and Co KG, Berlin–Boston, 2012 | MR
[4] V. K. Andreev, “On Inequalities of the Friedrichs type for Combined Domains”, J. Siberian Federal Univ., Math. and Physics, 2:2 (2009), 146–157