Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier--Stokes equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 140-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

3D continuous subalgebra is used to searching partially invariant solution of viscous incompressible fluid equations. It can be interpreted as a 2D motion of one or two immiscible fluids in plane channel. The arising initial boundary value problem for factor-system is an inverse one. Unsteady problem for creeping motions is solved by separating of variables method for one fluid or Laplace transformation method for two fluids.
Keywords: partially invariant solution, free boundary problem
Mots-clés : viscous fluid, interface.
@article{JSFU_2015_8_2_a2,
     author = {Victor K. Andreev},
     title = {Unsteady {2D} motions a viscous fluid described by partially invariant solutions to the {Navier--Stokes} equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {140--147},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/}
}
TY  - JOUR
AU  - Victor K. Andreev
TI  - Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier--Stokes equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 140
EP  - 147
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/
LA  - en
ID  - JSFU_2015_8_2_a2
ER  - 
%0 Journal Article
%A Victor K. Andreev
%T Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier--Stokes equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 140-147
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/
%G en
%F JSFU_2015_8_2_a2
Victor K. Andreev. Unsteady 2D motions a viscous fluid described by partially invariant solutions to the Navier--Stokes equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 140-147. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a2/

[1] V. O. Bytev, “Group-theoretic properties of the Navier–Stokes equations”, Chislennye metody sploshnoi mehaniki, 3:3 (1972), 13–17 (in Russian) | MR

[2] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, A. A. Rodionov, Application of Group-Theoretical Methods in Hydrodynamics, Kluwer Acad. Publ., Dordrecht–Boston–London, 2010

[3] V. K. Andreev, Yu. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachev, Mathematical Models of Convection, Walter de Gruyter GmbH and Co KG, Berlin–Boston, 2012 | MR

[4] V. K. Andreev, “On Inequalities of the Friedrichs type for Combined Domains”, J. Siberian Federal Univ., Math. and Physics, 2:2 (2009), 146–157