Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_2_a13, author = {Viktor E. Zalizniak and Oleg A. Zolotov}, title = {Towards a universal embedded atom method interatomic potential for pure metals}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {230--249}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a13/} }
TY - JOUR AU - Viktor E. Zalizniak AU - Oleg A. Zolotov TI - Towards a universal embedded atom method interatomic potential for pure metals JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 230 EP - 249 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a13/ LA - en ID - JSFU_2015_8_2_a13 ER -
%0 Journal Article %A Viktor E. Zalizniak %A Oleg A. Zolotov %T Towards a universal embedded atom method interatomic potential for pure metals %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 230-249 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a13/ %G en %F JSFU_2015_8_2_a13
Viktor E. Zalizniak; Oleg A. Zolotov. Towards a universal embedded atom method interatomic potential for pure metals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 230-249. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a13/
[1] M. S. Daw, M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals”, Phys. Rev. Letters, 50:17 (1983), 1285 | DOI
[2] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Phys. Rev. B, 29 (1983), 6443 | DOI
[3] H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, M. W. Chen, “Highly optimized embedded-atom-method potentials for fourteen fcc metals”, Phys. Rev. B, 83:13 (2011), 134118 | DOI
[4] I. A. Hijazi, Y. H. Park, “Consistent analytic embedded atom potential for face-centered cubic metals and alloys”, J. Mater. Sci. Technol., 25:6 (2009), 835–846
[5] X. D. Dai, Y. Kong, J. H. Li, B. X. Lin, “Extended Finnis-Sinclair potential for bss and fss metals and alloys”, J. Phys.: Condensed Metter, 18 (2006), 4527 | DOI
[6] B.-J. Lee, M. I. Baskes, H. Kim, Y. K. Cho, “Second nearest-neighbor modified embedded atom method potentials for bcc transition metals”, Phys. Rev. B, 64 (2001), 184102 | DOI
[7] S. J. Plimpton, A. P. Thompson, “Computational aspects of many-body potentials”, MRS Bulletin, 37:5 (2012), 513–521 | DOI
[8] R. B. Wilson, D. M. Riffe, “An embedded-atom-method model for alkali-metal vibrations”, J. Phys.: Condens. Matter, 24 (2012), 335401 | DOI
[9] R. Pasianot, E. J. Savino, “Embedded-atom-method interatomic potentials for hcp metals”, Phys. Rev. B, 45 (1992), 12704–12710 | DOI
[10] F. Cleri, V. Rosato, “Tight-binding potentials for transition metals and alloys”, Phys. Rev. B, 48 (1993), 22–33 | DOI
[11] S. Chen, J. Xu, H. Zhang, “A new scheme of many-body potentials for hcp metals”, Computational Materials Science, 29 (2004), 428–436 | DOI
[12] M. I. Baskes, R. A. Johnson, “Modified embedded atom potentials for hcp metals”, Model. Simul. Mater. Sci. Eng., 2 (1994), 147–163 | DOI
[13] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 3, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, Oxford, 1977
[14] S. M. Foiles, M. I. Baskes, M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Phys. Rev. B, 33:12 (1986), 7983 | DOI
[15] C. Kittel, Introduction to solid state physics, Wiley, New York, 1996
[16] F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, A. K. Niessen, Cohesion in metals, v. 1, North Holland, Amsterdam, 1988
[17] P. Ziesche, J. P. Perdew, C. Fiolhais, “Spherical voids in the stabilized jellium model: Rigorous theorems and Padé representation of the void-formation energy”, Phys. Rev. B, 49:12 (1994), 7916–7928 | DOI
[18] P. Ehrhart, P. Jung, H. Schultz, H. Ullmaier, Atomic defects in metals, Landolt–Bernstein — Group III, 25, ed. H. Ullmaier, Springer-Verlag, Berlin, 1991
[19] H-E. Schaefer, “Investigation of thermal equilibrium vacancies in metals by positron annihilation”, Phys. Status Solidi A, 102:1 (1987), 4–65
[20] H. Ledbetter, S. Kim, “Monocrystal elastic constants and derived properties of the cubic and the hexagonal elements”, Handbook of elastic properties of solids, liquids, and gases, v. 2, Academic Press, 2001
[21] P. Sisoda, M. P. Verma, “Shear moduli of polycrystalline cubic elements”, J. Phys. Chem. Solids, 50 (1989), 223–224 | DOI
[22] H. Ogi, H. Ledbetter, S. Kim, M. Hirao, “Contactless mode-selective resonance ultrasound spectroscopy: electromagnetic acoustic resonance”, J. Acoust. Soc. Am., 106 (1999), 660–665 | DOI
[23] R. O. Simmons, H. Wang, Single crystal elastic constants and calculated aggregate properties: a Handbook, MIT Press, Cambridge, MA, 1977
[24] W. Wycisk, M. Feller-Kniepmeier, “Quenching experiments in high purity Ni”, J. Nucl. Mater, 69/70 (1978), 616–619 | DOI
[25] R. W. Balluffi, “Vacancy defect mobilities and binding energies obtained from annealing studies”, J. Nucl. Mater, 69/70 (1978), 240–263 | DOI
[26] P. A. Korzhavyi, I. A. Abrikosov, B. Johansson, A. V. Ruban, H. L. Skriver, “First-principles calculations of the vacancy formation energy in transition and noble metals”, Phys. Rev. B, 59:18 (1999), 11693–11703 | DOI
[27] J. H. Rose, J. R. Smith, F. Guinea, J. Ferrante, “Universal features of the equation of state of metals”, Phys. Rev. B, 29 (1984), 2963–2969 | DOI
[28] R. Feder, “Equilibrium defect concentration in crystalline lithium”, Phys. Rev. B, 2:4 (1970), 828 | DOI | MR
[29] R. Feder, H. P. Charbnau, “Equilibrium defect concentration in crystalline sodium”, Phys. Rev., 149:2 (1966), 464 | DOI
[30] D. K. C. MacDonald, “Self diffusion in the alkali metals”, J. Chem. Phys., 21:1 (1953), 177 | DOI
[31] C. Janot, B. George, P. Delcroix, “Point defects in vanadium investigated by Mossbauer spectroscopy and positron annihilation”, J. Phys. F: Met. Phys., 12:1 (1982), 47 | DOI
[32] M. Puska, M. Nieminen, “Point defects in solids”, Density functional methods in chemistry and materials science, ed. M. Springborg, Wiley, New York, 1997
[33] K. Maier, M. Peo, B. Saile, S. H. Ehaefer, A. Seeger, “High-temperature positron annihilation and vacancy formation in refractory metals”, Phil. Mag. A, 40:5 (1979), 701 | DOI
[34] B. J. Lee, M. I. Baskes, H. Kim, Y. K. Cho, “Second nearest-neighbor modified embedded atom method potentials for bcc transition metals”, Phys. Rev. B, 64:18 (2001), 184102 | DOI
[35] R. A. Felice, J. Trivisonno, D. E. Shuele, “Temperature and pressure dependence of the single-crystal elastic constants of ${}^{6}Li$ and natural lithium”, Phys. Rev. B, 16:12 (1977), 5173 | DOI
[36] R. H. Martinson, “Variation of the elastic constants of sodium with temperature and pressure”, Phys. Rev., 178:3 (1969), 902 | DOI
[37] M. W. Rarquardt, J. Trivisonno, “Low temperature elastic constants of potassium”, J. Phys. and Chem. Solids, 26:2 (1965), 273 | DOI
[38] D. R. Lide, Handbook of chemistry and physics, CRC Press, Boca Raton, Fl, 2000
[39] D. K. C. MacDonald, “Self diffusion in the alkali metals”, J. Chem. Phys., 21 (1953), 177 | DOI
[40] W. Adlhart, G. Fritsch, E. Lüscher, “Equilibrium defect properties of sodium in the high temperature range”, J. Phys. and Chem. Solids, 36:12 (1975), 1405 | DOI
[41] J. N. Mundy, T. E. Miller, R. J. Porte, “Self-diffusion in potassium”, Phys. Rev. B, 3:8 (1971), 2445 | DOI
[42] M. Doyama, J. S. Koehler, “The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquid metals”, Acta Metall, 24:9 (1976), 871–879 | DOI
[43] E. Hashimoto, E. A. Smirnov, T. Kino, “Temperature dependence of the Doppler-broadened lineshape of positron annihilation in $\alpha$-Ti”, J. Phys. F: Met. Phys., 14:10 (1984), L215 | DOI
[44] V. O. Shestopal, “Specific heat and vacancy formation in titanium at high temperatures”, Sov. Phys. Solid State, 7 (1966), 2798–2800
[45] G. M. Hood, R. J. Schultz, N. Matsuura, “A positron annihilation spectroscopy study of Fe-free $\alpha$-Zr: Thermal equilibrium and irradiation effects”, J. Nucl. Mater, 226:1–2 (1995), 260–262 | DOI
[46] O. Le Bacq, F. Willaime, A. Pasturel, “Unrelaxed vacancy formation energies in group-IV elements calculated by the full-potential linear muffin-tin orbital method: Invariance with crystal structure”, Phys. Rev. B, 59:13 (1999), 8508–8515 | DOI
[47] G. M. Hood, R. J. Schultz, “Temperature dependence of positron annihilation in $\alpha$-Hf”, Materials Science Forum (Beijing, China, 1995), AECL (Series), 175–178, 375–378
[48] I. K. Mackenzie, J. Fabian, “Evidence from positron annihilation of anomalously low vacancy density in some metals with low melting points”, Can. J. Phys., 58:11 (1980), 1635–1639
[49] E. A. Brandes, G. B. Brook, Smithells metal reference book, Butterworths, Oxford, 1992, 15–16
[50] H. Ogi, S. Kai, H. Ledbetter, R. Tarumi, M. Hirao, K. Takashima, “Titanium high-temperature elastic constants through the hcp-bcc phase transformation”, Acta Materialia, 52 (2004), 2075–2080 | DOI
[51] J. F. Smith, J. A. Gjevre, “Elastic constants of yttrium single crystals in the temperature range 4.2–400K”, J. Appl. Phys., 31 (1960), 645–647 | DOI
[52] E. Fisher, C. Renken, “Adiabatic elastic moduli of single crystal alpha zirconium”, J. Nucl. Mater., 4 (1961), 311–316 | DOI
[53] R. W. Ferris, M. L. Shepard, J. F. Smith, “Elastic constants of thallium single crystals in the temperature range 4.2–300K”, J. Appl. Phys., 34 (1963), 768–770 | DOI
[54] W. R. Tyson, W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements”, Surface Science, 62:1 (1977), 267 | DOI
[55] V. Y. Gankin, Y. V. Gankin, General Chemistry Textbook. Chapter 11. Physical and chemical properties of substances/Theory of Metallic Bonding, , Institute of the Theoretical Chemistry http://itchem.com/theory_of_metallic_bonding