Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_2_a10, author = {Maxim Sidorov and Alexander Schmitt and Eugene S. Semenkin}, title = {Automated recognition of paralinguistic signals in spoken dialogue systems: ways of improvement}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {208--216}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a10/} }
TY - JOUR AU - Maxim Sidorov AU - Alexander Schmitt AU - Eugene S. Semenkin TI - Automated recognition of paralinguistic signals in spoken dialogue systems: ways of improvement JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 208 EP - 216 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a10/ LA - en ID - JSFU_2015_8_2_a10 ER -
%0 Journal Article %A Maxim Sidorov %A Alexander Schmitt %A Eugene S. Semenkin %T Automated recognition of paralinguistic signals in spoken dialogue systems: ways of improvement %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 208-216 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a10/ %G en %F JSFU_2015_8_2_a10
Maxim Sidorov; Alexander Schmitt; Eugene S. Semenkin. Automated recognition of paralinguistic signals in spoken dialogue systems: ways of improvement. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 208-216. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a10/
[1] F. Burkhardt et al., “A database of German emotional speech”, Proceedings of the Interspeech 2005 Conference (2005), 1517–1520
[2] A. Schmitt, B. Schatz, W. Minker, “Modeling and predicting quality in spoken human-computer interaction”, Proceedings of the SIGDIAL 2011 Conference (2011), 173–184
[3] S. Haq, P. J. B. Jackson, “Multimodal Emotion Recognition”, Machine Audition: Principles, Algorithms and Systems, ed. W. Wang, IGI Global Press, 2010, 173–184
[4] H. Mori, T. Satake, M. Nakamura, “Constructing a spoken dialogue corpus for studying paralinguistic information in expressive conversation and analyzing its statistical/acoustic characteristics”, Speech Communication, 53:1 (2011), 36–50 | DOI
[5] M. Grimm, K. Kroschel, S. Narayanan, “The Vera am Mittag German audio-visual emotional speech database”, IEEE International Conference Multimedia and Expo (Hannover, 2008), 865–868
[6] A. Dhall et al., “Collecting large, richly annotated facial-expression databases from movies”, IEEE MultiMedia, 19:3 (2012), 34–41 | DOI
[7] M. Valstar et al., “AVEC 2013: the continuous audio/visual emotion and depression recognition challenge”, Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge (New York, USA, 2013), 3–10
[8] O. Celiktutan et al., “MAPTRAITS 2014: The First Audio/Visual Mapping Personality Traits Challenge”, Proceedings of the Personality Mapping Challenge Workshop (Istanbul, Turkey, 2014)
[9] M. Sidorov, Ch. Brester, E. Semenkin, W. Minker, “Speaker State Recognition with Neural Network-based Classification and Self-adaptive Heuristic Feature Selection”, Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (Vienna, Austria, 2014), v. 1, 699–703
[10] M. Sidorov, S. Ultes, A. Schmitt, “Emotions are a personal thing: Towards speaker-adaptive emotion recognition”, IEEE International Conference on Acoustics, Speech and Signal Processing (Florence, Italy, 2014), 4803–4807
[11] B. Schuller et al., “The INTERSPEECH 2010 paralinguistic challenge”, Proc. of the Interspeech (2010), 2794–2797
[12] G. Zhao, M. Pietikainen, “Dynamic texture recognition using local binary patterns with an application to facial expressions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:6 (2007), 915–928 | DOI
[13] T. R. Almaev, M. F. Valstar, “Local gabor binary patterns from three orthogonal planes for automatic facial expression recognition”, IEEE Conference on Affective Computing and Intelligent Interaction (2013), 356–361
[14] N. Singhal et al., “Robust image watermarking using local Zernike moments”, Journal of Visual Communication and Image Representation, 20:6 (2009), 408–419 | DOI
[15] Xiong X., De la Torre F., “Supervised descent method and its applications to face alignment”, IEEE Conference on Computer Vision and Pattern Recognition (2013), 532–539