An integral formula for the number of lattice points in a domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 134-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the multidimensional logarithmic residue we show a simple formula for the difference between the number of integer points in a bounded domain of $\mathbb{R}^n$ and the volume of this domain. The difference proves to be the integral of an explicit differential form over the boundary of the domain.
Keywords: logarithmic residue, lattice point.
@article{JSFU_2015_8_2_a1,
     author = {Lev Aizenberg and Nikolai Tarkhanov},
     title = {An integral formula for the number of lattice points in a domain},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {134--139},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/}
}
TY  - JOUR
AU  - Lev Aizenberg
AU  - Nikolai Tarkhanov
TI  - An integral formula for the number of lattice points in a domain
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 134
EP  - 139
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/
LA  - en
ID  - JSFU_2015_8_2_a1
ER  - 
%0 Journal Article
%A Lev Aizenberg
%A Nikolai Tarkhanov
%T An integral formula for the number of lattice points in a domain
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 134-139
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/
%G en
%F JSFU_2015_8_2_a1
Lev Aizenberg; Nikolai Tarkhanov. An integral formula for the number of lattice points in a domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 134-139. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/