An integral formula for the number of lattice points in a domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 134-139
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the multidimensional logarithmic residue we show a simple formula for the difference between the number of integer points in a bounded domain of $\mathbb{R}^n$ and the volume of this domain. The difference proves to be the integral of an explicit differential form over the boundary of the domain.
Keywords:
logarithmic residue, lattice point.
@article{JSFU_2015_8_2_a1,
author = {Lev Aizenberg and Nikolai Tarkhanov},
title = {An integral formula for the number of lattice points in a domain},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {134--139},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/}
}
TY - JOUR AU - Lev Aizenberg AU - Nikolai Tarkhanov TI - An integral formula for the number of lattice points in a domain JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 134 EP - 139 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/ LA - en ID - JSFU_2015_8_2_a1 ER -
%0 Journal Article %A Lev Aizenberg %A Nikolai Tarkhanov %T An integral formula for the number of lattice points in a domain %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 134-139 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/ %G en %F JSFU_2015_8_2_a1
Lev Aizenberg; Nikolai Tarkhanov. An integral formula for the number of lattice points in a domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 134-139. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a1/