Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_1_a9, author = {Romi F. Shamoyan and Sergey M. Kurilenko}, title = {A note on a distance function in {Bergman} type analytic function spaces of~several variables}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {75--85}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/} }
TY - JOUR AU - Romi F. Shamoyan AU - Sergey M. Kurilenko TI - A note on a distance function in Bergman type analytic function spaces of~several variables JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 75 EP - 85 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/ LA - en ID - JSFU_2015_8_1_a9 ER -
%0 Journal Article %A Romi F. Shamoyan %A Sergey M. Kurilenko %T A note on a distance function in Bergman type analytic function spaces of~several variables %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 75-85 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/ %G en %F JSFU_2015_8_1_a9
Romi F. Shamoyan; Sergey M. Kurilenko. A note on a distance function in Bergman type analytic function spaces of~several variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/
[1] M. Arsenovic, R. Shamoyan, “On some extremal problems in spaces of harmonic functions”, ROMAI J., 7 (2011), 13–34
[2] R. Shamoyan, O. Mihic, “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bollet. de la Asoc. Matematica Venezolana, 42:2 (2010), 89–103
[3] R. Shamoyan, O. Mihic, “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 6 (2009), 514–517
[4] D. Bekolle, A. Bonami, G. Garrigos, C. Nana, M. Peloso, F. Ricci, Lecture notes on Bergman projectors in tube domain ver cones, an analytic and geometric viewpoint, Proceeding of the International Workshop on Classical Analysis (Yaounde, 2001)
[5] R. Shamoyan, M. Arsenovic, “Some remarks on extremal problems in weighted Bergman spaces of analytic functions”, Communication of the Korean Math. Society, 27:4 (2012), 753–762 | DOI
[6] R. Zhao, “Distance from Bloch functions to some Möbius invariant spaces”, Ann. Acad. Sci. Fenn., 33 (2008), 303–313
[7] R. Shamoyan, M. Radnia, “Some new estimates for distances in analytic function spaces of several complex variables and double Bergman representation formula”, J. of Nonlinear Sci. and Appl., 3:1 (2010), 48–54
[8] W. Xu, “Distances from Bloch functions to some Mobious invariant function spaces”, J. of Function Spaces and Appl., 7 (2009), 91–104 | DOI
[9] J. M. Anderson, J. Clunie, Ch. Pommerenke, “On Bloch functions and normal functions”, J. Reine. Angew. Math., 270 (1974), 12–37
[10] J. M. Anderson, “Bloch functions — the basic theory”, Operators and Function Theory (Lancaster, 1984), NATO ASI series, 153, Reidel, Dordrecht, 1985, 1–17
[11] J. Xiao, Geometric $Q_{p}$ functions, Frontiers in Mathematics, Birkhauser-Verlag, 2006
[12] P. Ghatage, D. Zheng, “Analytic functions of bounded mean oscillation and the Bloch space”, Integ. Equat. Oper. Theory, 17 (1993), 501–515 | DOI
[13] L. Ahlfors, “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–14 | DOI
[14] W. Rudin, “Analytic functions of Hardy class”, Trans. Amer. Math. Soc., 78 (1955), 46–66
[15] D. Khavinson, M. Stessin, “Certain linear extremal problems in Bergman spaces of analytic functions”, Indiana Univ. Math. J., 46:3 (1997), 933–974 | DOI
[16] S. Khavinson, “On an extremal problem in the theory of analytic function”, Russ. Math. Survey, 32:4 (1949), 158–159
[17] J. Faraut, A. Koranyi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994
[18] B. F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proc. Edinburg. Math. Society, 52:2 (2009), 529–544 | DOI
[19] D. Debertol, Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains, Dottorato di Ricerca in Matematica, Universita di Genova, Politecnico di Torino, 2003, 21–72
[20] P. Duren, A. Schuster, “Bergman spaces”, Mathematical Surveys and Monographs, 100, AMS, RI, 2004, 251–256
[21] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, J. Reine Angew. Math., 647 (2010), 25–56
[22] R. F. Shamoyan, E. V. Povprits, “Multifunctional analytic spaces on products of Bounded strictly pseudoconvex domains and embedding theorems”, Kragujevac J. of Math., 37:2 (2013), 221–244
[23] P. Jakobczak, “The boundary regularity of the solution of the df equation in products of strictly pseudoconvex domains”, Pacific J. of Math., 121:2 (1986), 371–386 | DOI
[24] F. A. Shamoyan, O. V. Yaroslavtseva, “Continuous projections, duality, and the diagonal mapping in weighted spaces of holomorphic functions with mixed norm”, Zap. Nauchn. Sem. POMI, 247, 1997, 268–275 (in Russian)
[25] A. Benedek, R. Panzone, “The space $L^p$, with mixed norm”, Duke Math. J., 28:3 (1961 301–324) | DOI
[26] S. M. Nikolskiy, Approximation of functions of several variables and embedding theorems, Springer-Verlag, Berlin, 1975