A note on a distance function in Bergman type analytic function spaces of~several variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 75-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

New sharp estimate concerning distance function in certain Bergman-type spaces of analytic functions on tube domains over symmetric cones is obtained. This is the first result of this type for tube domains over symmetric cones. New similar results in analytic mixed norm spaces on products of tube domains over symmetric cones will also be provided.
Keywords: distance estimates, Bergman spaces.
Mots-clés : tube domains
@article{JSFU_2015_8_1_a9,
     author = {Romi F. Shamoyan and Sergey M. Kurilenko},
     title = {A note on a distance function in {Bergman} type analytic function spaces of~several variables},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
AU  - Sergey M. Kurilenko
TI  - A note on a distance function in Bergman type analytic function spaces of~several variables
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 75
EP  - 85
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/
LA  - en
ID  - JSFU_2015_8_1_a9
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%A Sergey M. Kurilenko
%T A note on a distance function in Bergman type analytic function spaces of~several variables
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 75-85
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/
%G en
%F JSFU_2015_8_1_a9
Romi F. Shamoyan; Sergey M. Kurilenko. A note on a distance function in Bergman type analytic function spaces of~several variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a9/

[1] M. Arsenovic, R. Shamoyan, “On some extremal problems in spaces of harmonic functions”, ROMAI J., 7 (2011), 13–34

[2] R. Shamoyan, O. Mihic, “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bollet. de la Asoc. Matematica Venezolana, 42:2 (2010), 89–103

[3] R. Shamoyan, O. Mihic, “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 6 (2009), 514–517

[4] D. Bekolle, A. Bonami, G. Garrigos, C. Nana, M. Peloso, F. Ricci, Lecture notes on Bergman projectors in tube domain ver cones, an analytic and geometric viewpoint, Proceeding of the International Workshop on Classical Analysis (Yaounde, 2001)

[5] R. Shamoyan, M. Arsenovic, “Some remarks on extremal problems in weighted Bergman spaces of analytic functions”, Communication of the Korean Math. Society, 27:4 (2012), 753–762 | DOI

[6] R. Zhao, “Distance from Bloch functions to some Möbius invariant spaces”, Ann. Acad. Sci. Fenn., 33 (2008), 303–313

[7] R. Shamoyan, M. Radnia, “Some new estimates for distances in analytic function spaces of several complex variables and double Bergman representation formula”, J. of Nonlinear Sci. and Appl., 3:1 (2010), 48–54

[8] W. Xu, “Distances from Bloch functions to some Mobious invariant function spaces”, J. of Function Spaces and Appl., 7 (2009), 91–104 | DOI

[9] J. M. Anderson, J. Clunie, Ch. Pommerenke, “On Bloch functions and normal functions”, J. Reine. Angew. Math., 270 (1974), 12–37

[10] J. M. Anderson, “Bloch functions — the basic theory”, Operators and Function Theory (Lancaster, 1984), NATO ASI series, 153, Reidel, Dordrecht, 1985, 1–17

[11] J. Xiao, Geometric $Q_{p}$ functions, Frontiers in Mathematics, Birkhauser-Verlag, 2006

[12] P. Ghatage, D. Zheng, “Analytic functions of bounded mean oscillation and the Bloch space”, Integ. Equat. Oper. Theory, 17 (1993), 501–515 | DOI

[13] L. Ahlfors, “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–14 | DOI

[14] W. Rudin, “Analytic functions of Hardy class”, Trans. Amer. Math. Soc., 78 (1955), 46–66

[15] D. Khavinson, M. Stessin, “Certain linear extremal problems in Bergman spaces of analytic functions”, Indiana Univ. Math. J., 46:3 (1997), 933–974 | DOI

[16] S. Khavinson, “On an extremal problem in the theory of analytic function”, Russ. Math. Survey, 32:4 (1949), 158–159

[17] J. Faraut, A. Koranyi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994

[18] B. F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proc. Edinburg. Math. Society, 52:2 (2009), 529–544 | DOI

[19] D. Debertol, Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains, Dottorato di Ricerca in Matematica, Universita di Genova, Politecnico di Torino, 2003, 21–72

[20] P. Duren, A. Schuster, “Bergman spaces”, Mathematical Surveys and Monographs, 100, AMS, RI, 2004, 251–256

[21] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, J. Reine Angew. Math., 647 (2010), 25–56

[22] R. F. Shamoyan, E. V. Povprits, “Multifunctional analytic spaces on products of Bounded strictly pseudoconvex domains and embedding theorems”, Kragujevac J. of Math., 37:2 (2013), 221–244

[23] P. Jakobczak, “The boundary regularity of the solution of the df equation in products of strictly pseudoconvex domains”, Pacific J. of Math., 121:2 (1986), 371–386 | DOI

[24] F. A. Shamoyan, O. V. Yaroslavtseva, “Continuous projections, duality, and the diagonal mapping in weighted spaces of holomorphic functions with mixed norm”, Zap. Nauchn. Sem. POMI, 247, 1997, 268–275 (in Russian)

[25] A. Benedek, R. Panzone, “The space $L^p$, with mixed norm”, Duke Math. J., 28:3 (1961 301–324) | DOI

[26] S. M. Nikolskiy, Approximation of functions of several variables and embedding theorems, Springer-Verlag, Berlin, 1975