The tensor product and quasiorder of an algebra related to Cohen--Macaulay rings
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 49-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper shows how the tensor products of the distributive lattices and the finite solvable groups can used to WB-height-unmixed of the method of Stanley and Reisner.
Keywords: polytopes, order complex, tensor product, distributive lattice.
Mots-clés : quasiorder
@article{JSFU_2015_8_1_a6,
     author = {Ali Molkhasi},
     title = {The tensor product and quasiorder of an algebra related to {Cohen--Macaulay} rings},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {49--54},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a6/}
}
TY  - JOUR
AU  - Ali Molkhasi
TI  - The tensor product and quasiorder of an algebra related to Cohen--Macaulay rings
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 49
EP  - 54
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a6/
LA  - en
ID  - JSFU_2015_8_1_a6
ER  - 
%0 Journal Article
%A Ali Molkhasi
%T The tensor product and quasiorder of an algebra related to Cohen--Macaulay rings
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 49-54
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a6/
%G en
%F JSFU_2015_8_1_a6
Ali Molkhasi. The tensor product and quasiorder of an algebra related to Cohen--Macaulay rings. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 49-54. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a6/

[1] M. Bruggesser, P. Mani, “Shellable decompositions of cells and spheres”, Math. Scand., 29 (1971), 197–205

[2] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge University Press, 1998

[3] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., 25, 1967

[4] I. Chajda, S. Radeleczki, “Congruence schemes and their applications”, Comment. Math. Univ. Carolinae, 46:1 (2005), 1–14

[5] C. De Concini, D. Eisenbud, C. Procesi, Hodge algebras, Asterisque, 91, Societe Mathematique de France, Paris, 1982

[6] R. P. Dilworth, “Abstract commutative ideal theory”, Pacific J. Math., 12 (1962), 481–498 | DOI

[7] G. A. Fraser, “The semilattice tensor product of distributive lattices”, Tran. Amer. Math. Soc., 217 (1976), 183–194 | DOI

[8] G. Gratzer, Universal algebra, D. Van Nostrand Company, Princeton, 1968

[9] G. Gratzer, Lattice theory. First concepts and distributive lattices, Freeman, San Francisco, Calif., 1971

[10] M. Haviar, M. Ploscica, “Affine complete Stone algebras”, Algebra Universalis, 34 (1995), 355–365 | DOI

[11] K. Kaarli, L. Marki, E. T. Schmidt, “Affine complete semilattices”, Monatshefte Math., 99 (1985), 297–309 | DOI

[12] K. Kaarli, A. F. Pixley, Polynomial Completeness in Algebraic Systems, Chapman and Hall/CRC, 2000

[13] O. M. Mamedov, A. Molkhasi, “On congruence shcemes and compatible relations of algebras”, Transactions of National Academy of sciences of Azer., 4 (2009), 101–106

[14] A. Molkhasi, “Polynomials, $\alpha$-ideals and the principal lattice”, Journal of Siberian Federal University. Mathematics and Physics, 4:3 (2011), 292–297

[15] M. Ploisicica, “Affine complete distributive lattices”, Order, 11 (1994), 385–390 | DOI

[16] A. G. Pinus, I. Chajda, “Quasiorders on universal algebras”, Algebra Logika, 32:3 (1993), 308–325 | DOI

[17] M. Suzuki, “On the lattice of subgroups of finite groups”, Trans. Amer. Math. Soc., 70 (1951), 345–371 | DOI

[18] J. Usan, “Congruences of n-group and of associated Hosszú–Gluskin algebras”, Novi Sad. J. Math., 28 (1998), 91–108

[19] R. Woodroofe, “An EL-labeling of the subgroup lattice”, Proc. Amer. Math. Soc., 136 (2008), 3795–3801 | DOI