On an inverse problem for quasi-linear elliptic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The identification of an unknown constant coefficient in the main term of the partial differential equation $ - kM\psi(u) + g(x) u = f(x) $ with the Dirichlet boundary condition is investigated. Here $\psi(u)$ is a nonlinear increasing function of $u$, $M$ is a linear self-adjoint elliptic operator of the second order. The coefficient $k$ is recovered on the base of additional integral boundary data. The existence and uniqueness of the solution to the inverse problem involving a function $u$ and a positive real number $k$ is proved.
Keywords: inverse problem, boundary value problem, second-order elliptic equations, existence and uniqueness theorem
Mots-clés : filtration.
@article{JSFU_2015_8_1_a5,
     author = {Anna Sh. Lyubanova},
     title = {On an inverse problem for quasi-linear elliptic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/}
}
TY  - JOUR
AU  - Anna Sh. Lyubanova
TI  - On an inverse problem for quasi-linear elliptic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 38
EP  - 48
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/
LA  - en
ID  - JSFU_2015_8_1_a5
ER  - 
%0 Journal Article
%A Anna Sh. Lyubanova
%T On an inverse problem for quasi-linear elliptic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 38-48
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/
%G en
%F JSFU_2015_8_1_a5
Anna Sh. Lyubanova. On an inverse problem for quasi-linear elliptic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/

[1] G. Alessandrini, R. Caburro, “The Local Calderon Problem and the Determination at the Boundary of the Conductivity”, Comm. Partial Differential Equations, 34 (2009), 918–936 | DOI

[2] A. P. Calderon, “On an inverse boundary value problem”, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, Brazil, 1980), Soc. Brazil. Mat., Rio de Janeiro, 1980, 65–73

[3] A. Hasanov, A. Erdem, “Determination of unknown coefficient in a nonlinear elliptic problem related to the elasto-plastic torsion of a bar”, IMA J. Appl. Math., 73:4 (2008), 579–591 | DOI

[4] M. V. Klibanov, A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, Netherlands, 2004

[5] A. Sh. Lyubanova, “Identification of a constant coefficient in an elliptic equation”, Appl. Anal., 87 (2008), 1121–1128 | DOI

[6] A. Sh. Lyubanova, “Identification of a constant coefficient in a quasi-linear elliptic equation”, Journal of inverse and ill-posed problems, 22 (2014), 341–356 | DOI

[7] A. Nachman, B. Street, “Reconstruction in the Calderon Problem with Partial Data”, Communications in Partial Differential Equations, 35 (2010), 37–390 | DOI

[8] G. Nakamura, K. Tanuma, “A nonuniqueness Theorem for Inverse boundary Value Problem in Elasticity”, SIAM J. Appl. Math., 56 (1996), 602–610 | DOI

[9] O. A. Ladyzenskaja, N. N. Uralceva, Linear and Quasilinear Equations of Elliptic Type, Academic Press, New York, 1973

[10] H. Gajewski, K. Gröger, K. Zacharias, Nichtlinear Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, v. II, Mathematische Monographien, 38, Akademie-Verlag, Berlin, 1974

[11] J.-L. Lions, E. Magenes, Problemes aux Limites Non Homogenes et Applications, v. 1, Travaux et Recherches Mathematiques, 17, Dunod, Paris, 1968

[12] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker Inc., New York, 2000

[13] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Flow of fluids through natural rocks, Kluwer Academic Publ., 1990

[14] G. I. Barenblatt, J. Garcia-Azorero, A. De Pablo, J. L. Vazquez, “Mathematical Model of the Non-Equilibrium Water-Oil Displacement in Porous Strata”, Applicable Analysis, 65 (1997), 19–45 | DOI

[15] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Linear and nonlinear equations of the Sobolev type, Physmatlit, M., 2007 (in Russian)