On an inverse problem for quasi-linear elliptic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 38-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The identification of an unknown constant coefficient in the main term of the partial differential equation $ - kM\psi(u) + g(x) u = f(x) $ with the Dirichlet boundary condition is investigated. Here $\psi(u)$ is a nonlinear increasing function of $u$, $M$ is a linear self-adjoint elliptic operator of the second order. The coefficient $k$ is recovered on the base of additional integral boundary data. The existence and uniqueness of the solution to the inverse problem involving a function $u$ and a positive real number $k$ is proved.
Keywords:
inverse problem, boundary value problem, second-order elliptic equations, existence and uniqueness theorem
Mots-clés : filtration.
Mots-clés : filtration.
@article{JSFU_2015_8_1_a5,
author = {Anna Sh. Lyubanova},
title = {On an inverse problem for quasi-linear elliptic equation},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {38--48},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/}
}
TY - JOUR AU - Anna Sh. Lyubanova TI - On an inverse problem for quasi-linear elliptic equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 38 EP - 48 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/ LA - en ID - JSFU_2015_8_1_a5 ER -
Anna Sh. Lyubanova. On an inverse problem for quasi-linear elliptic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/