On an inverse problem for quasi-linear elliptic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 38-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The identification of an unknown constant coefficient in the main term of the partial differential equation $ - kM\psi(u) + g(x) u = f(x) $ with the Dirichlet boundary condition is investigated. Here $\psi(u)$ is a nonlinear increasing function of $u$, $M$ is a linear self-adjoint elliptic operator of the second order. The coefficient $k$ is recovered on the base of additional integral boundary data. The existence and uniqueness of the solution to the inverse problem involving a function $u$ and a positive real number $k$ is proved.
Keywords: inverse problem, boundary value problem, second-order elliptic equations, existence and uniqueness theorem
Mots-clés : filtration.
@article{JSFU_2015_8_1_a5,
     author = {Anna Sh. Lyubanova},
     title = {On an inverse problem for quasi-linear elliptic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/}
}
TY  - JOUR
AU  - Anna Sh. Lyubanova
TI  - On an inverse problem for quasi-linear elliptic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 38
EP  - 48
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/
LA  - en
ID  - JSFU_2015_8_1_a5
ER  - 
%0 Journal Article
%A Anna Sh. Lyubanova
%T On an inverse problem for quasi-linear elliptic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 38-48
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/
%G en
%F JSFU_2015_8_1_a5
Anna Sh. Lyubanova. On an inverse problem for quasi-linear elliptic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 38-48. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a5/