Cluster perturbation theory for 2d Ising model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with 2d Ising model in the scope of cluster perturbation theory. Ising model is defined on a two-dimensional square lattice, the amount of nearest neighbors $z=4$. Lattice is divided into clusters of a given size and a complete set of energy eigenvalues and eigenvectors of the cluster is defined by the diagonalization method. On the basis of this, Hubbard operators are constructed and Green function is calculated, taking into account intercluster interactions according to perturbation theory, it allows us to obtain the dependence of the magnetization on the temperature in the Hubbard-I approximation. Obtained results are compared with the exact solution of the two-dimensional Ising model.
Keywords: cluster perturbation theory, Ising model, X-operators.
@article{JSFU_2015_8_1_a4,
     author = {Ilya D. Ivantsov and Sergey G. Ovchinnikov},
     title = {Cluster perturbation theory for 2d {Ising} model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a4/}
}
TY  - JOUR
AU  - Ilya D. Ivantsov
AU  - Sergey G. Ovchinnikov
TI  - Cluster perturbation theory for 2d Ising model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 31
EP  - 37
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a4/
LA  - en
ID  - JSFU_2015_8_1_a4
ER  - 
%0 Journal Article
%A Ilya D. Ivantsov
%A Sergey G. Ovchinnikov
%T Cluster perturbation theory for 2d Ising model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 31-37
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a4/
%G en
%F JSFU_2015_8_1_a4
Ilya D. Ivantsov; Sergey G. Ovchinnikov. Cluster perturbation theory for 2d Ising model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a4/

[1] L. Onsager, “Crystal Statistics. I: A Two-Dimensional Model with an Order-Disorder Transition”, Phys. Rev., 65 (1944), 117–149 | DOI

[2] C. N. Yang, “The Spontaneous Magnetization of a Two-Dimensional Ising Model”, Phys. Rev., 85 (1952), 808–816 | DOI

[3] T. Maier, M. Jarrell, T. Pruschke, M. H. Hettler, “Quantum cluster theories”, Rev. Mod. Phys., 77 (2005), 1027–1080 | DOI

[4] S. V. Nikolaev, S. G. Ovchinnikov, “Cluster Perturbation Theory for the Hubbard Model: the Pinning of Chemical Potential”, Journal of Siberian Federal University. Mathematics Physics, 4 (2011), 162–167 (in Russian)

[5] S. G. Ovchinnikov, V. V. Val'kov, Hubbard Operators in the Theory of Strongly Correlated Electrons, Imperial College Press, 2004