Mean value theorem for harmonic functions on Cayley tree
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 28-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of the mean value theorem for harmonic functions on Cayley tree is proved in this paper.
Keywords: harmonic function, Caylee tree, mean value.
@article{JSFU_2015_8_1_a3,
     author = {Farrukh T. Ishankulov},
     title = {Mean value theorem for harmonic functions on {Cayley} tree},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {28--30},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a3/}
}
TY  - JOUR
AU  - Farrukh T. Ishankulov
TI  - Mean value theorem for harmonic functions on Cayley tree
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 28
EP  - 30
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a3/
LA  - en
ID  - JSFU_2015_8_1_a3
ER  - 
%0 Journal Article
%A Farrukh T. Ishankulov
%T Mean value theorem for harmonic functions on Cayley tree
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 28-30
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a3/
%G en
%F JSFU_2015_8_1_a3
Farrukh T. Ishankulov. Mean value theorem for harmonic functions on Cayley tree. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 28-30. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a3/

[1] A. Grigoryan, Analysis on Graphs, Lecture Notes, University of Bielefeld, WS, 2011/12

[2] S. G. Mikhlin, Linear partial differential equations, Vysshaya Shkola, M., 1977 (in Russian)

[3] P. M. Soardi, Potential theory of infinite network, Lecture Notes in Math., 1590, Springer-Verlag, Berlin, 1994

[4] U. A. Rozikov, F. T. Ishankulov, “Description of periodic p-harmonic functions on Cayley tree”, Nonlinear Differ. Equ. Appl., 17 (2010), 15–160 | DOI