The Euler–Maclaurin formula and differential operators of infinite order
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 86-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use methods of the theory of differential operators of infinite order for solving difference equations and for generalizing the Euler–Maclaurin formula in the case of multiple summation.
Keywords: indefinite summation, difference equations, differential operators of infinite order.
@article{JSFU_2015_8_1_a10,
     author = {Olga A. Shishkina},
     title = {The {Euler{\textendash}Maclaurin} formula and differential operators of infinite order},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {86--93},
     year = {2015},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/}
}
TY  - JOUR
AU  - Olga A. Shishkina
TI  - The Euler–Maclaurin formula and differential operators of infinite order
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 86
EP  - 93
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/
LA  - en
ID  - JSFU_2015_8_1_a10
ER  - 
%0 Journal Article
%A Olga A. Shishkina
%T The Euler–Maclaurin formula and differential operators of infinite order
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 86-93
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/
%G en
%F JSFU_2015_8_1_a10
Olga A. Shishkina. The Euler–Maclaurin formula and differential operators of infinite order. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 86-93. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/

[1] A. O. Gelfond, Calculus of finite differences, Nauka, M., 1977 (in Russian)

[2] G. Hardy, Divergent series, Oxford University Press, London, 1949

[3] S. A. Abramov, “On the summation of rational functions”, USSR Comput. Math. Math. Phys., 11:4 (1971), 324–330 | DOI

[4] S. P. Polyakov, “Indefinite summation of rational functions with factorization of denominators”, Programming and Computer Software, 37:6 (2011), 322–325 | DOI

[5] Yu. A. Dubinskyi, The Cauchy problem in the complex domain, Izdatelstvo MEI, M., 1996 (in Russian)

[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, J. American Math. Soc., 10:2 (1997), 371–392 | DOI

[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, J. American Math. Soc., 10:4 (1997), 797–833 | DOI

[8] G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, AMS, Providence, RI, 1984

[9] E. K. Leynartas, “Multidimensional Hadamard composition and sums with linear constraints on the summation indices”, Sib. Math. J., 30:2 (1989), 250–255 | DOI