The Euler--Maclaurin formula and differential operators of infinite order
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 86-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use methods of the theory of differential operators of infinite order for solving difference equations and for generalizing the Euler–Maclaurin formula in the case of multiple summation.
Keywords: indefinite summation, difference equations, differential operators of infinite order.
@article{JSFU_2015_8_1_a10,
     author = {Olga A. Shishkina},
     title = {The {Euler--Maclaurin} formula and differential operators of infinite order},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {86--93},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/}
}
TY  - JOUR
AU  - Olga A. Shishkina
TI  - The Euler--Maclaurin formula and differential operators of infinite order
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 86
EP  - 93
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/
LA  - en
ID  - JSFU_2015_8_1_a10
ER  - 
%0 Journal Article
%A Olga A. Shishkina
%T The Euler--Maclaurin formula and differential operators of infinite order
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 86-93
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/
%G en
%F JSFU_2015_8_1_a10
Olga A. Shishkina. The Euler--Maclaurin formula and differential operators of infinite order. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 86-93. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a10/

[1] A. O. Gelfond, Calculus of finite differences, Nauka, M., 1977 (in Russian)

[2] G. Hardy, Divergent series, Oxford University Press, London, 1949

[3] S. A. Abramov, “On the summation of rational functions”, USSR Comput. Math. Math. Phys., 11:4 (1971), 324–330 | DOI

[4] S. P. Polyakov, “Indefinite summation of rational functions with factorization of denominators”, Programming and Computer Software, 37:6 (2011), 322–325 | DOI

[5] Yu. A. Dubinskyi, The Cauchy problem in the complex domain, Izdatelstvo MEI, M., 1996 (in Russian)

[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, J. American Math. Soc., 10:2 (1997), 371–392 | DOI

[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, J. American Math. Soc., 10:4 (1997), 797–833 | DOI

[8] G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, AMS, Providence, RI, 1984

[9] E. K. Leynartas, “Multidimensional Hadamard composition and sums with linear constraints on the summation indices”, Sib. Math. J., 30:2 (1989), 250–255 | DOI