The 2D motion of perfect fluid with a free surface
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

The 3D continuous subalgebra is used to searching new partially invariant solution of incompressible perfect fluid equations. It can be interpreted as a non-stationary motion of a plane layer with one free surface. The velocity field and pressure are determined in analytical form by using Lagrangian coordinates.
Keywords: perfect fluid, partially invariant solution, non-stationary motion, free surfaces.
@article{JSFU_2015_8_1_a0,
     author = {Victor K. Andreev},
     title = {The {2D} motion of perfect fluid with a free surface},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {3--6},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a0/}
}
TY  - JOUR
AU  - Victor K. Andreev
TI  - The 2D motion of perfect fluid with a free surface
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 3
EP  - 6
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a0/
LA  - en
ID  - JSFU_2015_8_1_a0
ER  - 
%0 Journal Article
%A Victor K. Andreev
%T The 2D motion of perfect fluid with a free surface
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 3-6
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a0/
%G en
%F JSFU_2015_8_1_a0
Victor K. Andreev. The 2D motion of perfect fluid with a free surface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 3-6. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a0/

[1] A. A. Buchnev, “A Lie group admissible for the equations of an ideal incompressible fluid”, Dinamika Sploshnoy Sredy, 7, Novosibirsk, 1971, 212–214 (in Russian)

[2] A. D. Polyanin, V. F. Zaitsev, Handbook of nonlinear partial differential equations, CRC Press. Taylor and Francis Group, 2012, 942–949

[3] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, A. A. Rodionov, Application of GroupTheoretical Methods in Hydrodynamics, Kluwer Acad. Publ., Dordrecht–Boston–London, 2010