The 2D motion of perfect fluid with a free surface
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 3-6
Cet article a éte moissonné depuis la source Math-Net.Ru
The 3D continuous subalgebra is used to searching new partially invariant solution of incompressible perfect fluid equations. It can be interpreted as a non-stationary motion of a plane layer with one free surface. The velocity field and pressure are determined in analytical form by using Lagrangian coordinates.
Keywords:
perfect fluid, partially invariant solution, non-stationary motion, free surfaces.
@article{JSFU_2015_8_1_a0,
author = {Victor K. Andreev},
title = {The {2D} motion of perfect fluid with a free surface},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {3--6},
year = {2015},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a0/}
}
Victor K. Andreev. The 2D motion of perfect fluid with a free surface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 3-6. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a0/
[1] A. A. Buchnev, “A Lie group admissible for the equations of an ideal incompressible fluid”, Dinamika Sploshnoy Sredy, 7, Novosibirsk, 1971, 212–214 (in Russian)
[2] A. D. Polyanin, V. F. Zaitsev, Handbook of nonlinear partial differential equations, CRC Press. Taylor and Francis Group, 2012, 942–949
[3] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, A. A. Rodionov, Application of GroupTheoretical Methods in Hydrodynamics, Kluwer Acad. Publ., Dordrecht–Boston–London, 2010