The study of discrete probabilistic distributions of random sets of events using associative function
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 500-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the class of discrete probabilistic distributions of the II-nd type of random sets of event is investigated. As the tool for constructing of such probabilistic distributions it is offered to use associative functions. There is stated a new approach to define a discrete probabilistic distribution of the II-nd type of a random set on a finite set of $N$ events on the basis of obtained recurrence relation and a given associative function. Advantage of the offered approach is that for definition of probabilistic distribution instead of a totality of $2^N$ probabilities it is enough to know $N$ probabilities of events and a type of associative function. In this paper an $|X|$-ary covariance of a random set of events is considered. It is a measure of the additive deviation of the events from the independent situation. The process of recurrent constructing a probabilistic distribution II-nd type is demonstrated by the example of three associative functions. The proof of the legitimacy / illegitimacy the obtained distribution by passing to the probabilistic distribution of the I-st type by formulas of Möbius is given. Theorems that establish the form and conditions of the legitimacy of the resulting probabilistic distributions are proved. $|X|$-ary covariances of random sets of events are found.
Keywords: random set of events, discrete probabilistic distributions, associative function, $|X|$-ary covariance.
@article{JSFU_2014_7_4_a8,
     author = {Natalia A. Lukyanova and Daria V. Semenova},
     title = {The study of discrete probabilistic distributions of random sets of events using associative function},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {500--514},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a8/}
}
TY  - JOUR
AU  - Natalia A. Lukyanova
AU  - Daria V. Semenova
TI  - The study of discrete probabilistic distributions of random sets of events using associative function
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 500
EP  - 514
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a8/
LA  - en
ID  - JSFU_2014_7_4_a8
ER  - 
%0 Journal Article
%A Natalia A. Lukyanova
%A Daria V. Semenova
%T The study of discrete probabilistic distributions of random sets of events using associative function
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 500-514
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a8/
%G en
%F JSFU_2014_7_4_a8
Natalia A. Lukyanova; Daria V. Semenova. The study of discrete probabilistic distributions of random sets of events using associative function. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 500-514. http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a8/

[1] H. T. Nguyen, An Introduction to Random Sets, Taylor Francis Group, LLC, 2006 | MR

[2] O. Yu. Vorobyev, Eventology, Siberian Federal University, Krasnoyarsk, 2007 (in Russ.)

[3] A. N. Shiryaev, Probability, v. 1, Moscow Center for Continuous Mathematical Education, M., 2004 (in Russ.) | Zbl

[4] O. Yu. Vorobyev, A. O. Vorobyev, “Summation of the set-additive functions and Mobius inversion formula”, Reports of the Russian Academy of Sciences, 336:4 (2009), 417–420 (in Russ.) | MR

[5] D. V. Semenova, “On New Notion of Quasi-Entropies of Eventological Distribution”, Proc. of the Second IASTED International Multi-Conference on Automation Control And Information Technology (Novosibirsk, Russia, 2005), ACTA PRESS, 380–385

[6] O. Yu. Vorobyev, N. A. Lukyanova, “Properties of the entropy of multiplicative-truncated approximations of eventological distributions”, J. of Siberian Federal University. Math. $\$ Physics, 4:1 (2011), 50–60

[7] D. V. Semenova, N. A. Lukyanova, “Random set decomposition of joint distribution of random variables of mixed type”, J. Proceedings of the Institute of Applied Mathematics, 1:2 (2012), 50–60

[8] D. V. Semenova, L. Yu. Shangareeva, “Associative Ali-Mikhail-Haq's random set”, Proc. of scientific-applied conference «Statistics and its Applications» (National University of Uzbekistan, Tashkent, Uzbekistan, 2013), 88–94

[9] R. B. Nelsen, An Introduction to Copulas, Springer Science+Business Media, Inc., New York, 2006 | MR | Zbl

[10] S. Alsina, M. Frank, B. Schveizer, Associative functions: Triangular Norms and Copulas, World Scientific Publishing Co. Pte. Ltd., Singapore, 2006 | MR | Zbl

[11] K. Menger, “Statistical Metrics”, Proc. Nat. Acad. Sci. USA, 8 (1942), 535–537 | DOI | MR

[12] B. Schweizer, A. Sklar, Probabilistic metric spaces, North Holland, New York, 1983 | MR | Zbl

[13] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Pub., Boston, 2000 | MR | Zbl

[14] E. P. Klement, R. Mesiar, Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier, Amsterdam, 2005 | MR

[15] A. I. Orlov, Non-numerical statistics, MZ-Press, M., 2004 (in Russ.)

[16] O. Yu. Vorobyev, “A dependence of events”, Proc. of the VII All-Russian FAM Conf. on Financial and Actuarial Mathametics and Related Fields (SFU, Krasnoyarsk, Russia, 2008), v. 1, 65–66 (in Russ.)

[17] E. E. Goldenok, N. A. Lukyanova, D. V. Semenova, “Applications of wide dependence theory in eventological scoring”, Proc. of the IASTED Int. Conf. «Automation, Control and Information Technology», ACIT-CDA 2010, in cooperation with the RAS (Novosibirsk, Russia, 2010), ACTA Press, Anaheim–Calgary–Zurich, 316–322