On the asymptotic of homological solutions to linear multidimensional difference equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 417-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose a pair $(\gamma,\omega)$, where $\gamma$ is a homological $k$-dimensional cycle on the characteristic set of the equation and $\omega$ is a holomorphic form of degree $k$. This pair defines a so called homological solution by the integral over $\gamma$ of the form $\omega$ multiplied by an exponential kernel. A multidimensional variant of Perron's theorem in the class of homological solutions is illustrated by an example of the first order equation.
Keywords: difference equation, asymptotic, amoebas of algebraic sets
Mots-clés : logarithmic Gauss map.
@article{JSFU_2014_7_4_a1,
     author = {Natalia A. Bushueva and Konstantin V. Kuzvesov and Avgust K. Tsikh},
     title = {On the asymptotic of homological solutions to linear multidimensional difference equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {417--430},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a1/}
}
TY  - JOUR
AU  - Natalia A. Bushueva
AU  - Konstantin V. Kuzvesov
AU  - Avgust K. Tsikh
TI  - On the asymptotic of homological solutions to linear multidimensional difference equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 417
EP  - 430
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a1/
LA  - en
ID  - JSFU_2014_7_4_a1
ER  - 
%0 Journal Article
%A Natalia A. Bushueva
%A Konstantin V. Kuzvesov
%A Avgust K. Tsikh
%T On the asymptotic of homological solutions to linear multidimensional difference equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 417-430
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a1/
%G en
%F JSFU_2014_7_4_a1
Natalia A. Bushueva; Konstantin V. Kuzvesov; Avgust K. Tsikh. On the asymptotic of homological solutions to linear multidimensional difference equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 417-430. http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a1/

[1] H. Poincaré, “Sur les équations linéaires aux différentielles ordinaires et aux différences finies”, Amer. J. Math., 7 (1885), 203–258 | DOI | MR

[2] O. Perron, “Über die Poincarésche lineare Differenzengleichung”, J. Reine Angew. Math., 137 (1909), 6–64 | Zbl

[3] A. O. Gelfond, Calculus of finite differences, Hindustan Publishing Corp., Delhi, 1971 | MR | Zbl

[4] V. M. Trutnev, A. K. Tsikh, “On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions”, Izvestiya. Math., 59:5 (1995), 1083–1107 | DOI | MR

[5] M. V. Fedoryuk, The Saddle Point method, Nauka, M., 1977 (in Russ.) | MR | Zbl

[6] E. K. Leinartas, M. Passare, A. K. Tsikh, “Multidimensional versions of Poincare's theorem for difference equations”, Sb. Math., 199:10 (2008), 1505–1522 | DOI | MR

[7] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR

[8] M. Passare, A. Tsikh, “Amoebas: their spines and contours”, Contemporary maths., 377, 2005, 275–288 | DOI | MR | Zbl

[9] N. A. Bushueva, A. K. Tsikh, “On amoebas of algebraic sets of higher codimension”, Proceedings of the Steklov Institute of Mathematics, 279, 2012, 52–62 | DOI | MR

[10] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. Math., 151 (2000), 309–326 | DOI | MR | Zbl

[11] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math., 151 (2000), 54–70 | MR

[12] K. V. Kuzvesov, “Contour of compactified amoeba of a hypersurface”, Vestnik KrasGU, 7 (2006), 85–90 (in Russ.)

[13] V. I. Danilov, A. G. Khovanskii, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Mathematics of the USSR-Izvestiya, 29:2 (1987), 279–298 | DOI | Zbl

[14] N. A. Bushueva, “On Isotopies and Homologies of Subvarieties of Toric Varieties”, Sib. Math. J., 51:5 (2010), 776–788 | DOI | MR | Zbl

[15] J. Leray, “Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy III)”, Bull. Math. Soc. France, 87 (1959), 81–180 | MR | Zbl