Risk aversion for defining elliptic acceptance sets in the model of generalized coherent risk measures
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 347-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of generalized coherent risk measures the properties of acceptance sets are examined. The class of elliptic cones is developed for representing individual preferences. The article presents the method of defining an appropriate elliptic cone using values of risk aversion (for $p$-norms in the space of risks).
Keywords: generalized coherent risk measures, risk aversion, acceptance set, preference relation, elliptic cone.
@article{JSFU_2014_7_3_a9,
     author = {Tatyana A. Kustitskaya},
     title = {Risk aversion for defining elliptic acceptance sets in the model of generalized coherent risk measures},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {347--361},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a9/}
}
TY  - JOUR
AU  - Tatyana A. Kustitskaya
TI  - Risk aversion for defining elliptic acceptance sets in the model of generalized coherent risk measures
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 347
EP  - 361
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a9/
LA  - en
ID  - JSFU_2014_7_3_a9
ER  - 
%0 Journal Article
%A Tatyana A. Kustitskaya
%T Risk aversion for defining elliptic acceptance sets in the model of generalized coherent risk measures
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 347-361
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a9/
%G en
%F JSFU_2014_7_3_a9
Tatyana A. Kustitskaya. Risk aversion for defining elliptic acceptance sets in the model of generalized coherent risk measures. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 347-361. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a9/

[1] C. Acerbi, D. Tasche, “Expected Shortfall: a natural alternative to value at risk”, Economic notes, 31 (2001), 379–388 | DOI

[2] S. Wang, “Premium calculation by transforming the layer premium density”, ASTIN Bulletin, 26:1 (1996), 71–92 | DOI

[3] A. A. Novoselov, “Generalized coherent risk measures in decision-making under risk”, Modelling and Analysis of Safety and Risk in Comolex Systems, Proc. of the International Scientific school (St.-Peterburg, 2005), 145–150

[4] A. A. Novoselov, “Risk Aversion: a Qualitative Approach and Quantitetive Estimates”, Autimation and Remote Control, 2003, no. 7, 1165–1176 | DOI | MR | Zbl

[5] Ph. Artzner, F. Delbaen, J.-M. Eber, D. Heath, “Coherent measures of risk”, Mathematical Finance, 9 (1999), 203–228 | DOI | MR | Zbl

[6] T. Kustitskaya, “Representation of preferences by generalized coherent risk measures”, Journal of Siberian Federal University. Mathematics and Physics, 5:4 (2012), 451–461 (in Russian)

[7] T. Kustitskaya, “Acceptance cone for some preferences”, Proceedings of the X Internatioal FAMET'2011 Conference, ed. Oleg Vorobuov, KSTEI, SFU, Krasnoyarsk, 2011, 192–196 (in Russian)