Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_3_a8, author = {Vladimir R. Kulikov}, title = {Conditions for convergence of the {Mellin--Barnes} integral for solution to system of algebraic equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {339--346}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/} }
TY - JOUR AU - Vladimir R. Kulikov TI - Conditions for convergence of the Mellin--Barnes integral for solution to system of algebraic equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 339 EP - 346 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/ LA - en ID - JSFU_2014_7_3_a8 ER -
%0 Journal Article %A Vladimir R. Kulikov %T Conditions for convergence of the Mellin--Barnes integral for solution to system of algebraic equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2014 %P 339-346 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/ %G en %F JSFU_2014_7_3_a8
Vladimir R. Kulikov. Conditions for convergence of the Mellin--Barnes integral for solution to system of algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 339-346. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/
[1] H. J. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C.R. Acad. Sci. Paris Sér. I Math., 172 (1921), 658–661 | Zbl
[2] O. N. Zhdanov, A. K. Tsikh, “Studying the multiple Mellin–Barnes integrals by means of multidimensional residues”, Sib. Math. J., 39:2 (1998), 245–260 | DOI | MR | Zbl
[3] I. A. Antipova, “An Expression for the Superposition of General Algebraic Functions in Terms of Hypergeometric Series”, Sib. Math. J., 44:5 (2003), 757–764 | DOI | MR | Zbl
[4] I. A. Antipova, A. K. Tsikh, “The discriminant locus of a system of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 29–56 | DOI | MR | Zbl
[5] V. R. Kulikov, V. A. Stepanenko, “On solutions and Waring's formulas for systems of $n$ algebraic equations in $n$ variables”, St. Petersburg Mathematical Journal, 26:5 (2014) | MR
[6] V. A. Stepanenko, “On the solution of a system of $n$ algebraic equations in $n$ variables with by means of hypergeometric functions”, Vestnik Krasnoyar. Gosudarst. Univer., 1 (2003), 35–48 (in Russian)
[7] L. Nilsson, Amoebas, Discriminants, and Hypergeometric Functions, Doctoral Thesis, Department of Mathematics, Stockholm University, Sweden, 2009