Conditions for convergence of the Mellin--Barnes integral for solution to system of algebraic equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 339-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we consider the Mellin–Barnes integral that corresponds to a monomial function of a solution to a system of $n$ algebraic equations in $n$ unknowns. We obtain the necessary condition for the convergence domain of the integral to be non empty. For $n=2$ we prove that this condition is also sufficient.
Keywords: Mellin–Barnes integral
Mots-clés : algebraic equations, convergence.
@article{JSFU_2014_7_3_a8,
     author = {Vladimir R. Kulikov},
     title = {Conditions for convergence of the {Mellin--Barnes} integral for solution to system of algebraic equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {339--346},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/}
}
TY  - JOUR
AU  - Vladimir R. Kulikov
TI  - Conditions for convergence of the Mellin--Barnes integral for solution to system of algebraic equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 339
EP  - 346
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/
LA  - en
ID  - JSFU_2014_7_3_a8
ER  - 
%0 Journal Article
%A Vladimir R. Kulikov
%T Conditions for convergence of the Mellin--Barnes integral for solution to system of algebraic equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 339-346
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/
%G en
%F JSFU_2014_7_3_a8
Vladimir R. Kulikov. Conditions for convergence of the Mellin--Barnes integral for solution to system of algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 339-346. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a8/

[1] H. J. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C.R. Acad. Sci. Paris Sér. I Math., 172 (1921), 658–661 | Zbl

[2] O. N. Zhdanov, A. K. Tsikh, “Studying the multiple Mellin–Barnes integrals by means of multidimensional residues”, Sib. Math. J., 39:2 (1998), 245–260 | DOI | MR | Zbl

[3] I. A. Antipova, “An Expression for the Superposition of General Algebraic Functions in Terms of Hypergeometric Series”, Sib. Math. J., 44:5 (2003), 757–764 | DOI | MR | Zbl

[4] I. A. Antipova, A. K. Tsikh, “The discriminant locus of a system of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 29–56 | DOI | MR | Zbl

[5] V. R. Kulikov, V. A. Stepanenko, “On solutions and Waring's formulas for systems of $n$ algebraic equations in $n$ variables”, St. Petersburg Mathematical Journal, 26:5 (2014) | MR

[6] V. A. Stepanenko, “On the solution of a system of $n$ algebraic equations in $n$ variables with by means of hypergeometric functions”, Vestnik Krasnoyar. Gosudarst. Univer., 1 (2003), 35–48 (in Russian)

[7] L. Nilsson, Amoebas, Discriminants, and Hypergeometric Functions, Doctoral Thesis, Department of Mathematics, Stockholm University, Sweden, 2009