Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_3_a7, author = {Tatyana S. Krepizina}, title = {Univalent differentials of integer order on variable torus}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {331--338}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a7/} }
TY - JOUR AU - Tatyana S. Krepizina TI - Univalent differentials of integer order on variable torus JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 331 EP - 338 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a7/ LA - en ID - JSFU_2014_7_3_a7 ER -
Tatyana S. Krepizina. Univalent differentials of integer order on variable torus. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 331-338. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a7/
[1] H. M. Farkas, I. Kra, Riemann surfaces, Springer, New-York, 1992 | MR | Zbl
[2] G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Massachusetts, 1957 | MR | Zbl
[3] L. V. Ahlfors, L. Bers, Spaces of Riemann surfaces and quasi-conformal mappings, M., 1961 (in Russian) | MR
[4] V. V. Chueshev, Multiplicative functions and Prym differentials on variable compact Riemann surface, v. 2, Kemerovo, 2003 (in Russian)
[5] C. J. Earle, “Families of Riemann surfaces and Jacobi varieties”, Annals of Mathematics, 107 (1978), 255–286 | DOI | MR | Zbl
[6] V. N. Monahov, E. V. Semenko, Boundary problems and pseudodifferential operators on Riemann surfaces, Fizmatlit, M., 2003 (in Russian)
[7] T. S. Krepizina, “Divisors of Prym differentials and Abelian differential on torus”, Vestnik KemGU, 1:3 (2011), 206–211 (in Russian)
[8] T. S. Krepizina, V. V. Chueshev, “Multiplicative functions and Prym differentials on variable tori”, Vestnik NGU, 12:1 (2012), 74–90 (in Russian)