Univalent differentials of integer order on variable torus
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 331-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a full description for divisors of elementary differentials of all kinds. An analog of Appell's expansion formula for univalent functions on a variable torus is obtained. All basic type of vector bundles of meromorphic differentials of integer order over a Teichmüller space for torus are studied.
Keywords: univalent meromorphic differentials of integer order, divisors, vector bundles over Teichmüller space for torus.
@article{JSFU_2014_7_3_a7,
     author = {Tatyana S. Krepizina},
     title = {Univalent differentials of integer order on variable torus},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {331--338},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a7/}
}
TY  - JOUR
AU  - Tatyana S. Krepizina
TI  - Univalent differentials of integer order on variable torus
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 331
EP  - 338
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a7/
LA  - en
ID  - JSFU_2014_7_3_a7
ER  - 
%0 Journal Article
%A Tatyana S. Krepizina
%T Univalent differentials of integer order on variable torus
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 331-338
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a7/
%G en
%F JSFU_2014_7_3_a7
Tatyana S. Krepizina. Univalent differentials of integer order on variable torus. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 331-338. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a7/

[1] H. M. Farkas, I. Kra, Riemann surfaces, Springer, New-York, 1992 | MR | Zbl

[2] G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Massachusetts, 1957 | MR | Zbl

[3] L. V. Ahlfors, L. Bers, Spaces of Riemann surfaces and quasi-conformal mappings, M., 1961 (in Russian) | MR

[4] V. V. Chueshev, Multiplicative functions and Prym differentials on variable compact Riemann surface, v. 2, Kemerovo, 2003 (in Russian)

[5] C. J. Earle, “Families of Riemann surfaces and Jacobi varieties”, Annals of Mathematics, 107 (1978), 255–286 | DOI | MR | Zbl

[6] V. N. Monahov, E. V. Semenko, Boundary problems and pseudodifferential operators on Riemann surfaces, Fizmatlit, M., 2003 (in Russian)

[7] T. S. Krepizina, “Divisors of Prym differentials and Abelian differential on torus”, Vestnik KemGU, 1:3 (2011), 206–211 (in Russian)

[8] T. S. Krepizina, V. V. Chueshev, “Multiplicative functions and Prym differentials on variable tori”, Vestnik NGU, 12:1 (2012), 74–90 (in Russian)