Asymptotic behavior at infinity of the Dirichlet problem solution of the $2k$ order equation in a layer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 311-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the operator $(-\Delta)^{k} u(x)+\nu^{2k}u(x)$ with $x \in R^{n} (n\geqslant 2 , k\geqslant 2)$ an explicit fundamental solution is obtained, and for the equation $(- \Delta)^{k} u(x)+\nu^{2k}u(x)=f(x)$ (for $f\in C^{\infty}(R^{n})$ with compact support) the leading term of an asymptotic expansion at infinity of a solution is computed. The same result is obtained for the solution of the Dirichlet problem in a layer in $R^{n+1}$.
Keywords: asymptotic behavior, fundamental solution, $G$-Meyer function.
Mots-clés : elliptic equation, estimation of solution
@article{JSFU_2014_7_3_a4,
     author = {Mikhail S. Kildyushov and Valery A. Nikishkin},
     title = {Asymptotic behavior at infinity of the {Dirichlet} problem solution of the $2k$ order equation in a layer},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {311--317},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a4/}
}
TY  - JOUR
AU  - Mikhail S. Kildyushov
AU  - Valery A. Nikishkin
TI  - Asymptotic behavior at infinity of the Dirichlet problem solution of the $2k$ order equation in a layer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 311
EP  - 317
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a4/
LA  - en
ID  - JSFU_2014_7_3_a4
ER  - 
%0 Journal Article
%A Mikhail S. Kildyushov
%A Valery A. Nikishkin
%T Asymptotic behavior at infinity of the Dirichlet problem solution of the $2k$ order equation in a layer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 311-317
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a4/
%G en
%F JSFU_2014_7_3_a4
Mikhail S. Kildyushov; Valery A. Nikishkin. Asymptotic behavior at infinity of the Dirichlet problem solution of the $2k$ order equation in a layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 311-317. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a4/

[1] I. M. Gelfand, G. E. Shilov, Distributions and actions over them, Dobrosvet, M., 2000, in Russian pp. | Zbl

[2] I. N. Vekua, “About metaharmonic functions”, Tr. Tbil. Mat. Inst., 12 (1943), 105–166 (in Russian)

[3] A. V. Filinovsky, “About asymptotic behavior of solutions of one non-stationary mixed problem”, Dif. Uravn., 21:3 (1985), 443–454 (in Russian) | MR

[4] G. S. Meijer, “On the G-function”, Nederl. Akad. Wetensch. Proc. Ser. A, 49 (1946), 227–237 ; 344–357 ; 457–469 ; 632–641 ; 765–772 ; 936–943 ; 1063–1072 ; 1162–1175 | MR | MR | MR | MR | MR | Zbl | MR

[5] S. Mizohata, The theory of partial differential equations, Cambridge University Press, New York, 1973 | MR | Zbl

[6] A. P. Prudnikov, J. A. Brychkov, O. I. Marichev, Integrals and series. Supplementary chapters, Nauka, M., 1986 (in Russian) | MR

[7] Y. L. Luke, The Special Functions and Their Approximations, v. I, II, Academic Press, New York, 1969 | Zbl

[8] S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Translated from the Russian by Scripta Technica, Inc. Translation edited by Alan Jeffrey, Fourth edition prepared by Ju. V. Geronimus, M. Ju. Ceitlin, Academic Press, New York, 1965 | MR

[9] V. A. Nikishkin, “On estimates of solutions to boundary-value problems for elliptic systems in a layer”, Funct. An. and Its Appl., 45:2 (2011), 128–136 | DOI | MR | Zbl