Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_3_a11, author = {Maxim N. Nazarov}, title = {New approaches to the analysis of the elementary reactions kinetics}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {373--382}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a11/} }
TY - JOUR AU - Maxim N. Nazarov TI - New approaches to the analysis of the elementary reactions kinetics JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 373 EP - 382 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a11/ LA - en ID - JSFU_2014_7_3_a11 ER -
Maxim N. Nazarov. New approaches to the analysis of the elementary reactions kinetics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 373-382. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a11/
[1] M. N. Nazarov, “On the construction of correct mathematical model of chemical kinetics”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 3 (2012), 65–73 (in Russian)
[2] D. G. Blackmond, “A Powerful Methodology for Mechanistic Studies of Complex Catalytic Reactions”, Angew. Chem. Int. Ed., 44 (2005), 4302–4320 | DOI
[3] A. Kenneth, Chemical Kinetics, the study of reaction rates in solution, VCH Publishers, 1991
[4] S. Vajda, T. Turanyi, “Principal Component Analysis for Reducing the Edelson-Field-Noyes Model of the Belousov–Zhabotinsky Reaction”, J. Phys. Chemistry, 90 (1986), 1664–1670
[5] M. G. Slinko, T. I. Zelenyak, T. A. Akramov, M. M. Lavrent'ev, V. S. Sheplev, “Nonlinear dynamic of catalytic reactions and process (review)”, Matem. Mod., 9 (1997), 87–109 (in Russian) | MR | Zbl
[6] G. S. Jablonskij, V. I. Bykov, A. N. Gorban', Kineticheskie modeli kataliticheskih reakcij, Nauka, Novosibirsk, 1983 (in Russian)
[7] S. A. Losev, A. L. Sergievskaya, E. A. Kovach, E. A. Nagnibeda, B. F. Gordietz, “Kinetics of chemical reactions in thermally nonequilibrium gas”, Matem. Mod., 15 (2003), 72–82 (in Russian) | Zbl
[8] V. I. Bykov, S. B. Cybenova, Nonlinear models of chemical kinetics, KRASAND, 2011 (in Russian)
[9] M. N. Nazarov, “On alternative to partial differential equations for the modelling of reaction-diffusion systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 2, 35–47 (in Russian)
[10] N. M. Emanujel', D. G. Knorre, Course of Chemical Kinetics, Vysshaja shkola, M., 1984 (in Russian)
[11] M. B. Gorensek, M. D. Kostin, “Non-Arrhenius rate constants in complex reaction systems”, The Journal of Chemical Physics, 83 (1985), 2280–2283 | DOI