New approaches to the analysis of the elementary reactions kinetics
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 373-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an alternative implementation of reaction progress kinetic analysis based on physically rigorous models of chemical kinetics. In addition we investigate the adaptation of dimensional kinetic constants of the classical chemical kinetics models for use in physically rigorous ones.
Keywords: reaction progress kinetic analysis, elementary reactions.
@article{JSFU_2014_7_3_a11,
     author = {Maxim N. Nazarov},
     title = {New approaches to the analysis of the elementary reactions kinetics},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {373--382},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a11/}
}
TY  - JOUR
AU  - Maxim N. Nazarov
TI  - New approaches to the analysis of the elementary reactions kinetics
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 373
EP  - 382
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a11/
LA  - en
ID  - JSFU_2014_7_3_a11
ER  - 
%0 Journal Article
%A Maxim N. Nazarov
%T New approaches to the analysis of the elementary reactions kinetics
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 373-382
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a11/
%G en
%F JSFU_2014_7_3_a11
Maxim N. Nazarov. New approaches to the analysis of the elementary reactions kinetics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 373-382. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a11/

[1] M. N. Nazarov, “On the construction of correct mathematical model of chemical kinetics”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 3 (2012), 65–73 (in Russian)

[2] D. G. Blackmond, “A Powerful Methodology for Mechanistic Studies of Complex Catalytic Reactions”, Angew. Chem. Int. Ed., 44 (2005), 4302–4320 | DOI

[3] A. Kenneth, Chemical Kinetics, the study of reaction rates in solution, VCH Publishers, 1991

[4] S. Vajda, T. Turanyi, “Principal Component Analysis for Reducing the Edelson-Field-Noyes Model of the Belousov–Zhabotinsky Reaction”, J. Phys. Chemistry, 90 (1986), 1664–1670

[5] M. G. Slinko, T. I. Zelenyak, T. A. Akramov, M. M. Lavrent'ev, V. S. Sheplev, “Nonlinear dynamic of catalytic reactions and process (review)”, Matem. Mod., 9 (1997), 87–109 (in Russian) | MR | Zbl

[6] G. S. Jablonskij, V. I. Bykov, A. N. Gorban', Kineticheskie modeli kataliticheskih reakcij, Nauka, Novosibirsk, 1983 (in Russian)

[7] S. A. Losev, A. L. Sergievskaya, E. A. Kovach, E. A. Nagnibeda, B. F. Gordietz, “Kinetics of chemical reactions in thermally nonequilibrium gas”, Matem. Mod., 15 (2003), 72–82 (in Russian) | Zbl

[8] V. I. Bykov, S. B. Cybenova, Nonlinear models of chemical kinetics, KRASAND, 2011 (in Russian)

[9] M. N. Nazarov, “On alternative to partial differential equations for the modelling of reaction-diffusion systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 2, 35–47 (in Russian)

[10] N. M. Emanujel', D. G. Knorre, Course of Chemical Kinetics, Vysshaja shkola, M., 1984 (in Russian)

[11] M. B. Gorensek, M. D. Kostin, “Non-Arrhenius rate constants in complex reaction systems”, The Journal of Chemical Physics, 83 (1985), 2280–2283 | DOI