Limit theorem for the joint distribution in the $Q$-processes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 289-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $Q$-process is considered in this paper. A link between the $Q$-process and the Galton–Watson branching process allowing immigration is established in the paper. Due to this link the limit theorem on the joint distribution of the population size and the total state of the $Q$-process is proved.
Keywords: Galton–Watson branching process; immigration; total state of the $Q$-process; limit theorem.
@article{JSFU_2014_7_3_a1,
     author = {Azam A. Imomov},
     title = {Limit theorem for the joint distribution in the $Q$-processes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {289--296},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a1/}
}
TY  - JOUR
AU  - Azam A. Imomov
TI  - Limit theorem for the joint distribution in the $Q$-processes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 289
EP  - 296
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a1/
LA  - en
ID  - JSFU_2014_7_3_a1
ER  - 
%0 Journal Article
%A Azam A. Imomov
%T Limit theorem for the joint distribution in the $Q$-processes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 289-296
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a1/
%G en
%F JSFU_2014_7_3_a1
Azam A. Imomov. Limit theorem for the joint distribution in the $Q$-processes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 289-296. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a1/

[1] K. B. Athreya, P. E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl

[2] Sh. K. Formanov, A. A. Imomov, “On asymptotic properties of Q-processes”, Uzbeksky Matematichesky Zhurnal, 3 (2011), 175–183 (in Russian) | MR

[3] T. E. Harris, “Some mathematical models for branching processes”, Mathematical Statatistics and Probability, Proceedings of 2nd Berkeley Symposium, 1951, 305–328 | MR | Zbl

[4] C. R. Heatcote, “A Branching Process Allowing Immigration”, Journal of the Royal Statistical Society, 27:1 (1965), 138–143 | MR

[5] A. A. Imomov, “On a form of condition of non-extinction of branching processes”, Uzbeksky Matematichesky Zhurnal, 2 (2001), 46–51 (in Russian) | MR

[6] A. A. Imomov, “Some asymptotical behaviors of Galton–Watson branching processes under condition of non-extinctinity of it remote future”, Probability Theory and Mathematical Statistics, Abstracts of Comm. of 8th Vilnius Conference, 2002

[7] A. A. Imomov, “A differential analog of the main lemma of the theory of Markov branching processes and its applications”, Ukrainian Mathematical Journal, 57:2 (2005), 307–315 | MR | Zbl

[8] A. A. Imomov, “Q-processes as the Galton-Watson Branching Processes with Immigration”, Financial and Actuarial Mathemetics and Eventoconvergence of Technology, Proceedings of IX FAMET Conference, 2010, 148–152 (in Russian)

[9] A. A. Imomov, “On Markov analogue of Q-processes with continuos time”, Theory of Probability and Mathematical Statistics, 84 (2012), 57–64 | DOI | MR | Zbl

[10] D. P. Kennedy, “The Galton–Watson process conditioned on the total progeny”, Journal of Applied Probability, 12:4 (1975), 800–806 | DOI | MR | Zbl

[11] V. F. Kolchin, Random mappings, Nauka, M., 1984 (in Russian) | MR

[12] J. Lamperti, P. E. Ney, “Conditioned branching processes and their limiting diffusions”, Theory of Probability and its Applications, 13 (1968), 126–137 | DOI | MR | Zbl

[13] A. G. Pakes, “Some Limit Theorems for the Total Progeny of a Branching Process”, Advances in Applied Probability, 3:1 (1971), 176–192 | DOI | MR | Zbl

[14] A. G. Pakes, “On the critical Galton–Watson process with immigration”, J. Aust. Math. Soc., 12:4 (1971), 476–482 | DOI | MR | Zbl

[15] A. G. Pakes, “Some new limit theorems for the critical branching process allowing immigration”, Stochastic Processes and its Applications, 3 (1975), 175–185 | DOI | MR

[16] A. G. Pakes, “Limit theorems for the simple branching process allowing immigration. I: The case of finite offspring mean”, Advances in Applied Probability, 11 (1979), 31–62 | DOI | MR | Zbl

[17] A. G. Pakes, “Revisiting conditional limit theorems for the mortal simple branching process”, Bernoulli, 5:6 (1999), 969–998 | DOI | MR | Zbl

[18] A. G. Pakes, “Critical Markov branching process limit theorems allowing infinite variance”, Advances in Applied Probability, 42 (2010), 460–488 | DOI | MR | Zbl

[19] A. M. Yaglom, “Some limit theorems of theory of Branching random processes”, Doklady AN SSSR, 13:8 (1947), 795–798 (in Russian) | MR