Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_3_a1, author = {Azam A. Imomov}, title = {Limit theorem for the joint distribution in the $Q$-processes}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {289--296}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a1/} }
TY - JOUR AU - Azam A. Imomov TI - Limit theorem for the joint distribution in the $Q$-processes JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 289 EP - 296 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a1/ LA - en ID - JSFU_2014_7_3_a1 ER -
Azam A. Imomov. Limit theorem for the joint distribution in the $Q$-processes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 289-296. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a1/
[1] K. B. Athreya, P. E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl
[2] Sh. K. Formanov, A. A. Imomov, “On asymptotic properties of Q-processes”, Uzbeksky Matematichesky Zhurnal, 3 (2011), 175–183 (in Russian) | MR
[3] T. E. Harris, “Some mathematical models for branching processes”, Mathematical Statatistics and Probability, Proceedings of 2nd Berkeley Symposium, 1951, 305–328 | MR | Zbl
[4] C. R. Heatcote, “A Branching Process Allowing Immigration”, Journal of the Royal Statistical Society, 27:1 (1965), 138–143 | MR
[5] A. A. Imomov, “On a form of condition of non-extinction of branching processes”, Uzbeksky Matematichesky Zhurnal, 2 (2001), 46–51 (in Russian) | MR
[6] A. A. Imomov, “Some asymptotical behaviors of Galton–Watson branching processes under condition of non-extinctinity of it remote future”, Probability Theory and Mathematical Statistics, Abstracts of Comm. of 8th Vilnius Conference, 2002
[7] A. A. Imomov, “A differential analog of the main lemma of the theory of Markov branching processes and its applications”, Ukrainian Mathematical Journal, 57:2 (2005), 307–315 | MR | Zbl
[8] A. A. Imomov, “Q-processes as the Galton-Watson Branching Processes with Immigration”, Financial and Actuarial Mathemetics and Eventoconvergence of Technology, Proceedings of IX FAMET Conference, 2010, 148–152 (in Russian)
[9] A. A. Imomov, “On Markov analogue of Q-processes with continuos time”, Theory of Probability and Mathematical Statistics, 84 (2012), 57–64 | DOI | MR | Zbl
[10] D. P. Kennedy, “The Galton–Watson process conditioned on the total progeny”, Journal of Applied Probability, 12:4 (1975), 800–806 | DOI | MR | Zbl
[11] V. F. Kolchin, Random mappings, Nauka, M., 1984 (in Russian) | MR
[12] J. Lamperti, P. E. Ney, “Conditioned branching processes and their limiting diffusions”, Theory of Probability and its Applications, 13 (1968), 126–137 | DOI | MR | Zbl
[13] A. G. Pakes, “Some Limit Theorems for the Total Progeny of a Branching Process”, Advances in Applied Probability, 3:1 (1971), 176–192 | DOI | MR | Zbl
[14] A. G. Pakes, “On the critical Galton–Watson process with immigration”, J. Aust. Math. Soc., 12:4 (1971), 476–482 | DOI | MR | Zbl
[15] A. G. Pakes, “Some new limit theorems for the critical branching process allowing immigration”, Stochastic Processes and its Applications, 3 (1975), 175–185 | DOI | MR
[16] A. G. Pakes, “Limit theorems for the simple branching process allowing immigration. I: The case of finite offspring mean”, Advances in Applied Probability, 11 (1979), 31–62 | DOI | MR | Zbl
[17] A. G. Pakes, “Revisiting conditional limit theorems for the mortal simple branching process”, Bernoulli, 5:6 (1999), 969–998 | DOI | MR | Zbl
[18] A. G. Pakes, “Critical Markov branching process limit theorems allowing infinite variance”, Advances in Applied Probability, 42 (2010), 460–488 | DOI | MR | Zbl
[19] A. M. Yaglom, “Some limit theorems of theory of Branching random processes”, Doklady AN SSSR, 13:8 (1947), 795–798 (in Russian) | MR